1

Mathematically, grid maps are data structures that divide (discretize) the
space in cubes (hypercubes) of n dimensions. They are commonly used in
artificial intelligence algorithms, such path planning. Although their mathe-
matical definition is clear and simple, it is not that easy to work with them
from a practical point of view. Therefore, in this report we are detailing
the mathematical generalization of common operations with cubic grid maps
and how to implement them. Another useful tutorial on grid maps (but only

Generalyzing n-Dimensional Grid Maps
Handling and Neighbour Cells Extraction

Javier V. Gémez
RoboticsLab
Carlos III University of Madrid
E-mail: jvgomez@ing.uc3m.es
Website: www.javiervgomez.com
Document: V 1.0

January 16, 2014

Abstract

Grid maps are extensively used in many different algorithms. Among
the different grid map types we are focusing on rectangular (or cubic)
grid map with a priori unkown number of dimensions. We are detail-
ing the main problems that arise when working with this type of data
structure: extraction and validation of 4-connectivity neighbours for a
given cell, conversion from index to coordinates (and vice-versa) and
the mathematical generalization to n-dimensional grids. Also, we are
detailing a generic implementation available as free software.

Introduction

1

for 2D) can be found in http://www-cs-students.stanford.edu/~amitp/
game-programming/grids/ which includes triangular and hexagonal grids.

The main reason of this report is that, when trying to implement such
structures, it becomes difficult to generalize. For example, boost::multi_array
library provides tools to create n-dimensional arrays in which the number
of dimensions has to be known in compilation time, which is an important
limitation. We detected a lack in the available software of n-dimensional grid
maps in which the size can be dynamic, even in the number of dimensions,
in runtime. Therefore, we came up with the formulation described in this
document in which all the operations are parametrized by the number of
dimensions and their size. This is probably not a novel work, but we were
not able to find any similar document.

For any comment or questions about the formulation, implementation,
this document or whatever, please, do not hesitate to contact the author.

Note A strong mathematical background is NOT required to understand
this document, not even a strong programming background. The formula-
tion and implementation detailed in the following lines have been tested in
complex algorithms.

2 Definitions

For simplicity, we are assuming cubic (or hypercubic) grids. This mean that
the cell size is the same in all dimensions. However, the same applies for any
parallelogram-based gridmap. Hence, we define an n-dimensional grid map
as the set of cells correctly ordered whose dimensions are consistent in terms
of size. In other words, if the first row has 5 columns, the second row will
also have 5 columns.

An n-dimensional grid map G is composed by n4;,,s dimensions. The size
of each dimension is stored in a vector d = [dy,d,...,d,_1] and the size of
the total grid map is

size(G) = [[di=do-dy - dpy

Each cell within the grid map can be accesed in a double manner:

http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/

1. By its index. Each cell has a specific index within the grid map which
completely depends on the ordering convention chosen.

2. By its coordinates, giving a set of coordinates ¢ = [cg, c1, ..., Ch1].

The conversion from index to coordinates and vice-versa is trivial but can
be very painful if one does not have a good day. Therefore, it is detailed in
section [

In figure (1] examples of 2D and 3D grid maps are shown. Note that the
index ordering is not unique. In this case we have chosen this ordering since it
is easier to match with the physical dimensions of the grid (dimension 0 is x,
dimension 1 is y, and so on). For instance, in computer vision it is almost an
standard to place the first cell (pixel) in the top-left of the grid map (image)
with the dimension 0 (rows) going downwards and dimension 1 (columns)
leftwards. In any case, the formulation should valid in any case. However,
we recommend to review it as minor adjustements could be required.

Grid G2
Grid G1 55 856 M7 855 459

50 /57 /52 /)53 /54
15|16 |17 | 18 | 19 “49

75 (46 /47 /45 /49 [
10 Il pI2 I3 pr4 g0 &7 £> £5 44/4/9

= 4
— ~ 4
c. > 6 7 s S < 20 457 55 £S5 £
S St & ‘9
[} 7)) o
5, 8| &
Y 1 P2 S .27 7 A N N
° °
: : Ndims = 2 ; ; Ndims = 3
dimension 0 415, 4] dimension 0 d=[5, 4, 3]
size(G1)= 20 cells size(G2)= 60 cells

Figure 1: Example of a 2D and a 3D grid map. Usually, 3D grid maps are
represented with cubes. The numbers within the cells are the indices of those
cells.

3 General Neighbour Extraction

In this section we detail the generalization of the neighbour extraction in a
4-connectivity scheme. In order words, only cells which are touching oher

cells (sharing faces) are considered neighbours. In case you are interested in a
8-connectivity formulation and you want it to be included in this document,
please let the authors know.

In order to help the reader, we will detail the general formulation by
explaining the 2D case, expanding it to 3D and later generalizing to n-
dimensions. Along the document, we are working with the cells indices.
When the dimensions of the grid are known it is easy to build a vector of size
naims and check the neighbours by doing +1 in each coordinate. However, in
our case the dimensions of the grid are not known until execution. Therefore,
to generalize it is much easier and efficient to work indices, as we are showing
in the next paragraphs.

3.1 2-dimensional Neighbour Extraction

In a 2-dimensional map, the neighbour extraction is almost direct. In this
case, there are 4 neighbours, as shown in figure 2|

Grid G1
15 L6 L/ P8 P19

10 P11 gue™ 13 F14

|56 8 |9
I Fo [F1 @RS M2
dimension 0 Ndims = 2

d=[5, 4]
size(G1)= 20 cells

Figure 2: 4 neighbours highlighted in red of cell with index 7 (shaded) in a
2D grid map.

Now let us focus on the case shown in figure B} a general 2D grid map
where d = [dp, d;] is not known in advance. The neighbours of a cell with

index i,N (i) are given by the following expression:

— 1
Z. 1 for dimension 0
7
NO=1 14 (1)
) 0 for dimension 1
i+ dy
2DGrid G
(di-1)do (dl;ll)do (dz;ll)do do-1
2d0 2d0+1 'l--- ------- 3d0_1
—
S do do+1ldo+2| *===mmrrreee Dto-1
‘0
C
GE) O 1 2 ------------ d()—l
=
i . Ndims = 2
dimension 0 g ame =2

size(G)= n cells

Figure 3: 4 neighbours highlighted in red of cell with index i (shaded) in a

generic 2D grid map.

In the case shown in figure 3|, we have ¢ = 2dy + 2. Hence, its neighbours

will be:

N (i) = N (2dy +2) =

—1=2d

! 0o+3 for dimension 0
1+1=2dy+1

. (2)
Z—d0:d0+2

_ for dimension 1
1+ do = 3d0 + 2

3.1.1 Checking neighbours validity

If the queried index 7 is in one of the borders of the grid map, it will happen
that the neigbours are not valid. Recalling figure [2] imagine that we want
to extract the neighbours of ¢ = 19. According equation , the set of
neighbours would be N(19) = 18,20, 14,24. However, we can see that the
cells with index 20 does not exist. The returned neighbour is out of bounds of
the given grid map. Also, N'(14) = 13,15,9, 19 gives index 15 as neighbour.
In this case it is supposed to be a neighbour in dimension 0, but its value
for dimension 1 (coordinate 1) is ¢; = 3 while this value for cell index 14 is
c¢1 = 2. Therefore, it is not a neighbour.

This checking is easy if we were working with coordinates. Coordinates of
cell index 14 are ¢(14) = [4, 2]. Neighbours in each dimension can be obtained
by doing +1 in each dimesion. This means N'([4,2]) = [3,2], [5,2],[4, 1], [4, 3],
where [5,2] is out of bounds of the grid. As we decided to work with cell
indices, the following has to be checked:

e Dimension 0: Are the 2 neighbours in the same row (c;) that the
queried cell?

e Dimension 1: Are the 2 neighbours within grid bounds?

The mathematical expression to check if the given indices are neighbours
of 7 are as follows:

1. Neighbours of 7 in dimension 0 are valid if (operator [-] means the
integer part, this is, the integer number immediately below):

[(i &= 1)/ do] = [i/do] (3)
2. Neighbours of 7 in dimension 1 are valid if:

1—dy >0
i+ dy < size(g) =do-dy
3.2 3-dimensional Neighbour Extraction

Following the same procedure as for 2D grid maps, the neighbours extraction
in a 3D grid map whose dimensions are not known until runtime, as shown in

figure [is detailed in the following lines. In this case, there are a maximum
of 6 neighbours. The drawing of a 3D grid map with undefined dimensions
size is omitted since it is hard to understand. The following expression is
valid to get the neighbours of such grid map:

(

— 1
Z_ for dimension 0
1 +1
. i —do : .
N(i) = 4 for dimension 1 (5)

¢ 0
—dy - d
Z_ 0T for dimension 2

L 1+ do : dl

3DGrid G

55 /56 /57 /)58 /)59

50 /)57 /52)53)54

L5 /46 /L7 /48 /L9 f9

L0 /L7 /L2 (L7 441‘4;9
25 /26 /27 /28 2%

20 /27 22 27

o 7 2/3 4

; P Ndims = 3
dimension 0 d=1[5 4 3]
size(G)= 60 cells

dimension 2

Figure 4: 6 neighbours highlighted in red of cell with index i (shaded) in a
3D grid map.

3.2.1 Checking neighbours validity

We need to check the validity of the indices returned by the neighbours
extraction function as we did previously for 2D grid maps. Analogously, the
procedure is as follows (given in a slightly more formal way than 2D):

e Dimension 0: Are the 2 neighbours in the same row (c;) that the
queried cell?

e Dimension 1: Are the 2 neighbours within the same 2D grid slice?

e Dimension 2: Are the 2 neighbours within grid bounds?

The mathematical expression to check if the given indices are neighbours
of 7 are as follows:

1. Neighbours of i in dimension 0 are valid if (operator [-] means the
integer part, this is, the integer number immediately below):

[(i +1)/do] = [i/do] (6)
2. Neighbours of 7 in dimension 1 are valid if:

[(i £+ do)/(do - dv)] = [i/ (do - dy)] (7)

3. Neighbours of ¢ in dimension 2 are valid if:
[(i £ do - dv)/(do - di - do)] = [i/(do - di - da)] (8)

3.3 n-dimensional Neighbour Extraction

In light of the step from 2D to 3D neighbour extraction, it is possible to
generalize the formulation for n-dimensions according to the next expressions:

o for dimension 0
1+ 1
Z’ o for dimension 1
i+ do
N 4 d
N(l) Z o for dimension 2
1+ dy - dy
- n—2 .
- di =i—dy-dy-dy----- d,_
Z' Hz:g ' Z fodie ? for dimension n-1
\ t + Hk‘:O dk =1 + do . dl . d2 dTL*Z

(9)

3.3.1 Checking neighbours validity

e Dimension 0: Are the 2 neighbours in the same row (¢;) that the
queried cell?

e Dimension 1: Are the 2 neighbours within the same 2D grid slice?

e Dimension 2: Are the 2 neighbours within the same 3D grid slice?

e Dimension n-1: Are the 2 neighbours within the same nD grid slice?
More formally:

1. Neighbours of 7 in dimension 0 are valid if (operator [] means the
integer part, this is, the integer number immediately below):

[(2 £ 1)/ do] == [i/do] (10)

2. Neighbours of ¢ in dimension 1 are valid if:

[(i £ do)/(do - dv)] = [i/(do - dv)] (11)

n. Neighbours of n — ¢ in dimension 2 are valid if:

(it ﬁdw/ﬂdk] _ [z'/ ﬁ] (12)

that means:

4 Helper Functions

In this section we are describing many helpful functions that help the han-
dling of such n-dimensional grid maps.

4.1 Index to coordinates

It would be really useful to transform cell indices into sets of coordinates
for debug or printing purposes. Given an index ¢ of an grid map with n
dimensions with dimension sizes d, the set of coordinates ¢ can be computed
as follows (it is easier to start from the last dimension):

Cnoz = [(i = oot - TT}Z0 di)/ TTHZs di]
. n—2 n—3 n—4
Cpn—3 = [(Z —Cn—1 " 1lr—o dy — Cp—o - Hk:() dk)/ Hk:O dk}

Co = [(Z —Cp—1- HZ;S dp — Cp—z - HZ;S dy — -+ —c - do)/l]

Note Be very careful when implementing this with the parenthesis and
operations preference.

4.2 Coordinates to index

This operation can be also very useful when dealing with n-dimensional grid
maps. Given a set of coordinates ¢ of a cell within a grid map with n
dimensions and dimension sizes d, the cell index can be computed as shown
in the next equation:

n—2 n—3
Z':Cnfl'Hdk+cn—2'Hdk+"'+cl'd0+co (15)
k=0 k=0

5 Implementations

We have already implemented an n-dimensional grid map in C++. Our code
aimed to be as efficient as possible. It is under continuous development and
we are aware that many performance improvements can be done. The soft-
ware is distributed under the free software license GNU/GPL v3.0 and it
is uploaded at Biicode (http://www.biicode.com) in the block jotauve/nd-
gridmap (https://www.biicode.com/jotauve/blocks/jotauve/ndgridmap/
branches/master).

10

http://www.biicode.com
https://www.biicode.com/jotauve/blocks/jotauve/ndgridmap/branches/master
https://www.biicode.com/jotauve/blocks/jotauve/ndgridmap/branches/master

Is it based on the STL std::vectorj; class and allows runtime modifications
(no other code was found on the internet with this feature). The class is
templated so the cell element can be whatever the user wants. We recommend
any class used as cell element to derive from the Cell class provided in the
same Biicode block. Its declaration is simple, mainly:

template <class T> class nDGridMap {
public:
nDGridMap<T>(); // Default constructor not used.
nDGridMap<T> (const int ndims, const std::vector<int> & dimsize,
const float leafsize = 0.05)
virtual “nDGridMap<T>() {};

T getCell (const int idx);
void getNeighbours (const int idx, std::vector<int> & neighs);

int idx2coord (const int idx, std::vector<int> & coords);
int coord2idx (const std::vector<int> & coords, int & idx);
void showCoords (const int idx);
void showIdx (const std::vector<int> & coords);
protected:
std::vector<int> dimsize_; // Size of each dimension.
int ndims_;
float leafsize_; // Cells in the grid are cubic.
int ncells_;
std: :vector<T> cells_;

std::vector<int> d_; // Auxiliar vector to speed things up.

};

An important performance trick is the vector d_. This vector DOES
NOT correspond to the d vector explained in previous sections (this one
is dimsize_). The vector d_ is computed in a way that d_[0] = dimsize_[0],
d_[1] = dimsize_[0]-dimsize_[1], d_[2] = dimsize_[0]-dimsize_[1]-dimsize_[2],
and so on. It is precomputed in the constructor as follows:

for (int 1 = 0; i < ndims_; ++i) {
ncells_ *= dimsize_[i];

11

d_[i] = ncells_;
}

This vector is used in many different functions in order to not compute
every time the iterative product operation.

5.1 ndGridCell::getNeigbours()

This function implements the formulation give in equations [9] and [12] for n
dimensions. The code is as follows:

void getNeighbours (const int idx, std::vector<int> & neighs) {

// Dimension O done apart.

// Neighbours proposed.

int cl = idx-1, c2 = idx+1;

// Checking neighbour 1.

if ((c1 > 0) && (c1/d_[0] == idx/d_[0]))
neighs.push_back(cl);

// Checking neighbour 2.

if (c2/d_[0] == idx/d_[0])
neighs.push_back(c2);

for (int i = 1; i < ndims_; ++i) {

// Neighbours proposed.

cl = idx-d_[i-1];

c2 = idx+d_[i-1];

// Checking neighbour 1.

if ((c1 > 0) && (c1/d_[i] == idx/d_[i]))
neighs.push_back(cl);

// Checking neighbour 2.

if (c2/d_[i] == idx/d_[il)
neighs.push_back(c2);

Explanation: We are applying exactly the equations [0 and [12] but with the
small modification of using d_ which already contains the iterative product
results. Dimension 0 is done apart for code simplicity.

Note The bound checking (¢1 > 0) when checking the neighour computed
with —. For instance, neighbours of index 0 in a unidimensional grid of

12

size 5 would be indices -1 and 1. In C/C++, (int)-1/5 will be 0, while the
integer part is -1. Because of this, this additional checking is required. Be
really careful if you implement this in other languages, as this behaviour
may differ. We implement it this way since it is more efficient than actually
computing the integer part.

5.2 ndGridCell::idx2coord()

This function implements the equation with the same modification as
before leveraging d_. This function takes as input the index we want to
convert and the vector of coordinates where the otuput will be stored. The
code is:

int idx2coord (const int idx, std::vector<int> & coords) {

if (coords.size() !'= ndims_)
return -1;
else {

coords[ndims_-1] = idx/d_[ndims_-2]; // First step done apart.
int aux = idx - coords[ndims_-1]*d_[ndims_-2];

for (int i = ndims_ - 2; 1 > 0; —-1i) {
coords[i] = aux/d_[i-1];
aux —-= coords[i]*d_[i-1];
}
coords[0] = aux; //Last step done apart.
}
return 1;

Explanation: First, a dimensional check is carried out to avoid incorrect
parameters. The coordinate of the last dimension is done first outside the for
loop to initialize the aux variable, which accumulates the substraction of the
values to the index before the division. Lastly, the first coordinate is done
as the rest of the substraction.

5.3 ndGridCell::coord2idx()

In this case, the implementation of equation [15|is much straight forward:

int coord2idx (const std::vector<int> & coords, int & idx) {
if (coords.size() != ndims_)

13

return -1;
else {
idx = coords[0];
for(int i = 1; i < ndims_; ++i)
idx += coords([il*d_[i-1];
}
return 1;

}

Explanation: The function gets as parameters the vector of indices to
convert and the index to be returned. After a checking in the dimensions, the
idx variable is incremented for every dimension according to its coordinate
in that dimension.

IMPORTANT NOTE Note that the indexing is not valid for certain
languages. In Matlab, for instance, all the indices of a vector (or matrix) will
be from 1 to n (instead from 0 to n — 1 as in C++4). This applies to all the
code shown in this document. Take into account also the language-dependent
behaviour of certain functions, such as integer division.

Disclaimer The software is distributed under the free software license
GNU/GPL v3.0. Please check the conditions of this license before using
the software. It is distributed “as is”, without any guarranty. You proba-
bly need a Biicode account to access the code. It is free. The nDGridMap
Biicode block will probably depend on other Biicode blocks. As long as you
use Biicode as well those files will be automatically included in your project
when compiling. If you prefer to take the code out of Biicode, please analyze
carefully the includes in the source files to discover which other files you will
need.

This document, images and their sources are licensed under the Creative
Commons License, Attribution Share-Alike 3.0 (CC BY-SA 3.0) http://
creativecommons.org/licenses/by-sa/3.0/.

For any further information about anything (code, this document, formu-
lation, etc), do not hesitate to contact the authors, www. javiervgomez. com.

14

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
www.javiervgomez.com

	Introduction
	Definitions
	General Neighbour Extraction
	2-dimensional Neighbour Extraction
	Checking neighbours validity

	3-dimensional Neighbour Extraction
	Checking neighbours validity

	n-dimensional Neighbour Extraction
	Checking neighbours validity

	Helper Functions
	Index to coordinates
	Coordinates to index

	Implementations
	ndGridCell::getNeigbours()
	ndGridCell::idx2coord()
	ndGridCell::coord2idx()

