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Abstract This work presents a path planning algorithm for 3D robot formations
based on the standard Fast Marching Square (FM2) path planning method. This method
is enlarged in order to apply it to robot formations motion planning. The algorithm
is based on a leader-followers scheme, which means that the reference pose for the
follower robots is defined by geometric equations that place the goal pose of each
follower as a function of the leader’s pose. Besides, the Frenet-Serret frame is used
to control the orientation of the formation. The algorithm presented allows the for-
mation to adapt its shape so that the obstacles are avoided. Additionally, an approach
to model mobile obstacles in a 3D environment is described. This model modifies the
information used by the FM2 algorithm in favour of the robots to be able to avoid ob-
stacles. The shape deformation scheme allows to easily change the behaviour of the
formation. Finally, simulations are performed in different scenarios and a quantitative
analysis of the results has been carried out. The tests show that the proposed shape
deformation method, in combination with the FM2 path planner, is robust enough to
manage autonomous movements through an indoor 3D environment.

Keywords Robot Formations Motion Planning · Formation Control · Fast Marching
Square

1 Introduction

In recent years, research on multi-robot systems (MRS) in 3D environments has in-
creased exponentially due to the price drop of unmanned aerial vehicles (UAV) and
the advent of micro-air vehicles (MAV) as a popular robotic test bed. Furthermore, in
many tasks the use of multi-agent systems increases in overall mission performance,
flexibility and robustness without augmenting the capacity of each UAV unit [1].
Based on these characteristics, typical applications for MRS are: exploration [2],
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search and rescue [3], surveillance [4,5], and many others. In order to achieve a good
performance in any of these applications several research topics need to be addressed,
such as: modelling and control of such agents [6], collision avoidance [7], mapping
and state estimation with such agents [8] or formation control and planning [9].

In formation control, a group of coordinated robots have to perform a specific task
trying to keep a certain geometric configuration. The coordination of the robots is one
of the essential topics in the field of MRS. When operating in close proximity, limited
space or in a collaborative task, the movements of the robots have to be planned
and coordinated efficiently. In real world applications, this synchronised navigation
requires a computationally fast solution so that travel speed can be maintained.

There are many issues to be considered when designing a controller for mobile
robot formation, such as: the stability of the formation, the controllability of the shape
patterns or the safety of the movements. All these issues need to be addressed while
the formation is moving along different scenarios. Therefore, the configuration of the
formation should evolve over time in order to meet the different constraints. This
evolution can be quantified using different metrics that characterize it. Only a few
approaches have been found in the literature on how to do this measurement, mainly
because of its difficulty to be generalised. However, some of the most used criteria
for 2D formations can be easily extended to 3D formations. [10,11] use two similar
performance metrics for the evaluation of their experiments: average position error,
which is the average displacement of each robot from their predefined positions in
the formation; percentage of time in formation, that reflects the amount of time in
which the robots keep the geometry of the formation. [12,13] use a the formation
evaluation criterion called uniform dispersion, which evaluates if the same distance
is kept between all neighbour robots with a maximum tolerance of εd. In this paper,
the average position error of each robot along the path is computed. Moreover, since
the environments used in the simulations are quite challenging, an analysis based on
the distance of the robots to obstacles is also considered so that the safety of the
presented algorithm can be evaluated.

Many strategies can be found in the literature describing how to control the evo-
lution of the formation. In [14] the multi-agent coordination problem is studied un-
der the framework of control Lyapunov functions. The main idea is that every robot
has a control Lyapunov function and there exists a global Lyapunov function for
the whole formation which is a weighted sum of individual Lyapunov function of
each robot. The main drawback is the mathematical complexity needed to obtain
satisfactory results. Other works use an approach based on potential fields which are
combined in order to get the desired behaviour of the formation [15]. The major prob-
lem of these approaches is the existence of local minima. In other behaviour-based
approaches [16] each robot has basic primitive actions that generate the desired be-
haviour in response to sensory input. Possible schemas include collision avoidance
and goal seeking. Virtual structure introduced by [17] is defined as a collection of
agents that maintain a desired geometric configuration. The algorithm has three main
steps: the virtual structure is aligned with the position of the robots, then a trajectory
for every agent is obtained, and finally each robot follows its own path. This approach
is capable of maintaining a highly precise formation and has mainly been used for
satellite formation control [18]. However, due to its high computational complexity
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is very difficult to apply it to multi-UAV control. In the case of leader-followers ap-
proach, a common scheme is the model predictive controller [19] which was recently
introduced for holonomic robots [20]. The major focus of most methods is mainly to
maintain the formation based on pre-planned paths and static environment assump-
tion.

In this research a Leader-Followers (LF) approach has been used, extending the
work presented in [21]. In this strategy, a robot (that could be virtual) is designated
as the leader of the formation and follows a trajectory towards the goal point. At the
same time, follower robots are positioned behind it according to a default geometry
shape that can change, within a given range, trying to accommodate to the environ-
ment conditions [22–24]. An advantage of this strategy lies on its simple implemen-
tation since no feedback loop from followers to the leader is needed. This is due to
the leader’s behaviour, which can be considered as egoistic, since in the path plan-
ning phase the formation itself is not considered, and in the motion phase it also does
not take into consideration the followers robots. This approach leads to paths that are
optimal for the leader, while they might not be as good for the followers. Although a
bigger robot describing the formation could be considered in planning phase, avoid-
ing the path for the formation to go through narrow passages, our approach consid-
ers that any path can be accomplished if the deformation scheme is good enough.
Besides, the algorithm can find a solution even in the presence of very constrained
situations. Therefore, our deformation scheme allows the robots to adapt their paths
in the situations where their movements are constrained by the environment, which
is one of the key points of the algorithm. Another important characteristic is that it
depends on the leader’s motion, so it is very important to have a very good path plan-
ning and tracking because once the leader loses its path, its error is fully propagated
to all the followers and both the mission and coordination objectives could fail.

In the presented approach, the leader’s path is calculated using the Fast Marching
Square (FM2) path planning method, which ensures obtaining very safe and smooth
paths [25]. For the followers, a predefined geometry evolves dynamically, while the
leader is covering the path, based on a velocities map calculated as a first step of
FM2. The manner the deformation is produced is based on the algorithm described
in [26], which shows an easy way to deal with robot priorities when going through
very narrow environments, with a very low mathematical complexity. However, only
static scenarios are addressed in the previous work. In this research, a 3D modelling
of dynamic obstacles based on a grey scale local map is introduced. Besides, a slight
modification of the algorithm is introduced so that all the robots are able to take into
account the moving obstacles while covering the path. Finally, a quantitative analy-
sis on the performance of the algorithm with respect to the amount of deformation
needed to avoid the obstacles, and the safety of the solution in terms of distance to ob-
stacles, is presented. Furthermore, qualitative results are shown for different complex
scenarios.

The next sections of the paper are organised as follows. Section 2 introduces the
Fast Marching Square path planning method. In section 3 the application of FM2 to
the robot formation problem in static and dynamic scenarios is explained. In sec-
tion 4 simulation results for difference scenarios and a qualitative analysis of the
performance of the algorithm are shown. Finally, in section 5 conclusions and future



4 David Álvarez et al.

work are addressed.

2 Fast Marching Square path planning method

2.1 The Fast Marching Method

If we consider a light ray travelling through different materials, the Fermat’s principle
says that its path is the one that consumes a minimum time. This is specially interest-
ing in our application, because if we have only a source of light waves (goal point for
the path), each point in the space is connected with the source with a path that it is
parameterised by the time of arrival of the wave. Moreover, considering the set of all
the points of the domain with the time as last coordinate, we can create a Lyapunov
surface in which the level curves are isochronal and the Fermat’s paths are orthog-
onal to them. This means that it is impossible for the method to have local minima.
Graphically, this can be seen in figure 1, which represents the funnel potential of the
light wave propagation with a constant refraction index.

From the point of view of path planning, these considerations lead us to think that
computing the same path for robots can lead to a high save of time. Mathematically,
the propagation of the light is given by the Eikonal equation. In [27] an approximation
of the solution for this equation was proposed, the Fast Marching Method (FMM).
Let us assume a 2D map, where x = (x, y) is a point on the map with the coordinates
in relation to a Cartesian referential, D(x) is the front wave arrival time function
and W(x) is the velocity of the wave propagation. Besides, we assume that a wave
starts propagating at time D = 0 with velocity W always non-negative. The Eikonal
equation (1) defines the time of arrival of the propagating front wave, D(x), at each
point x, in which the propagation speed depends on the point, W(x), according to:

|∇D(x)|W(x) = 1 (1)

Fig. 1: Lyapunov surface when the propagation wave starts in a point and the refrac-
tion index is constant.



3D Robot Formations Path Planning with Fast Marching Square 5

Discretizing the gradient ∇D according to [28] it is possible to solve the Eikonal
equation at each point p(xi, y j), where i and j are the row and column of a grid map,
as follows:

D1 = min(Di−1, j,Di+1, j)
D2 = min(Di, j−1,Di, j+1) (2)

(
Di, j − D1

4x

)2

+

(
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1

W2
i, j

(3)

The FMM consists on solving Di, j for every point of the map starting at the source
point of the wave where Di0, j0 = 0. The following iterations solve the value D(i, j) for
the neighbours of the points solved in the previous one. Using as an input a binary
grid map, the output of the algorithm is similar to the distance transform, but in this
case is continuous, not discrete. These distances have the meaning of the time of
arrival of the expanding wave at every point in the map. After applying the FMM,
gradient descent can be used from any point of the map of distances to obtain a path
towards the source of the wave, which works as a goal point. This is valid only if
one wave has been employed to generate the map of distances. The main advantage
of this method is that the path obtained is optimal in distance, like the example in
figure 2.

2.2 Fast Marching Square Method

As we can see in figure 2, although optimal in distance, it is obvious that the path
produced by FMM is not safe in terms of distance to the obstacles, nor feasible in
terms of the abruptness of the turns that the path requires. These problems lead us
to consider using the FM2 method as path planner. The FM2 [29] solves these two
main disadvantages. It is based on applying the FMM twice. After the first time it
is applied, the resulting map of distances is considered as a map of velocities for
the second FMM step. This means that the second time the wave is propagated, the
velocity at which it moves can be different at every point in the map. Furthermore,

Fig. 2: Example of a path obtained with the FMM. The left side shows the original
map and the path calculated. In the right there is the map of distances computed with
FMM.
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Fig. 3: Example of a path obtained with the FM2. The left side shows the resulting
path of the algorithm in the initial map. In the right side there is the time of arrival
map.

this velocity is proportional to the distance to the closest obstacle, meaning that the
wave is faster when it is far from obstacles. This produces important differences in
the path that is computed, as it can be seen in figure 3.

The proposed FM2 algorithm has several properties which make it very good for
path planning purposes [24,26]. Most important ones include:

– No local minima: as long as only one wave is employed to generate the map of
distances, FMM ensures that there is a single global minimum at the source point
of the wave (goal of the path).

– Completeness: the method finds a path if it exists and notifies in case of no feasible
path.

– Smooth trajectories: the planner is able to provide a smooth motion plan which
can be executed by the robot motion controller. In other words, the plan does not
need to be refined.

– Reliable trajectories: it provides safe (in terms of distance to obstacles) and re-
liable trajectory (free from local traps). This avoids the coordination problem
between the local collision avoidance controllers and the global planners, when
local traps or blocked trajectories exist in the environment.

– Fast response: if the environment is static, the map of velocities is calculated only
once. Since the FMM can be implemented with a complexity order of O(n) [30],
building the map of velocities is a fast process.

2.3 3-Dimensional Fast Marching Square

Since the FM2 algorithm is based on the standard FMM, it is extensible to more than
2D, as it is done in this work on 3D robot formations planning. The algorithm works
exactly in the same way as the 2D version, with the only difference that the front wave
becomes a spatial curve. Also, the time response is a little slower since the size of the
grid that models the environment is much bigger. Despite this, all the properties of
the FM2 remain in a n-dimensional environment. This is the main fact that leads us
to use this algorithm as path planner.
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3 Robot Formation planning with FM2

The algorithm described next is an extension of [31,32], in which the FM2 path plan-
ning method is used to control 2D formation in different scenarios. Although the
general idea of the algorithm was presented in [21], the necessary improvements for
adapting this method to dynamic environments will be explained.

The algorithm is based on a leader-followers scheme, which is used to control the
robot formation. The reference pose for the follower robots is defined by equations
that define a geometric shape for the formation. This means that the goal poses along
the path of each follower are a function of the leader’s pose, as introduced in section
3.1. The leader can be a robot, a person or even a virtual leader. It is important to say
that the path for the leader is computed in an egotistic way, not taking into account the
other robots in the formation. This might lead to situations where the followers may
move too close to obstacles, or even collide with them. These situations are avoided
using the shape deformation scheme introduced in 3.2. Both the path planning and
the shape deformation are based on FM2. This algorithm provides a two-level artifi-
cial potential field which repels the robots from obstacles and has no local minima.
Integrating the potential given by FM2 and the shape deformation scheme for the fol-
lower robots, each robot has at each moment one single potential attracting it into
the objective, but repelling it from obstacles and other robots. The main requirement
when integrating all the potentials is to do it in a way that does not create local min-
ima. Figure 4 shows the steps of the algorithm on a triangle-shaped robot formation.
Although it is a 2D shape, it has been chosen because it is easier to understand the
behaviour the followers to avoid colliding with obstacles and among themselves.

3.1 Robot pose coordination

The aforementioned figure 4 shows the basic schema for controlling a robots forma-
tion in a 2D scene. However, when the formation performs in a 3D environment, a
problem arises when dealing with the orientation of the followers. While in 2D, nor-
mal and tangent vectors can be used because they are unique, this cannot be directly
applied in 3D, since there exist an infinite number of perpendicular vectors to the
tangent to the path. All these vectors are contained in a plane that is perpendicular to
the tangent vector, as depicted in figure 5.

In order to be able to use the proposed robot formation planning method in 3D, a
third reference has to be specified so that the reference shape of the formation can be
determined in a unique form. In this case, a generalization using a relative reference
based on the Frenet-Serret formulae [33,34] is proposed. It consists on extracting the
local characteristics of the path as a third reference, this way it allows the formation
to be environment-independent when defining the reference geometry.

The Frenet-Serret formulae are used to describe the kinematic properties (veloc-
ity, curvature and torsion) of a particle which moves in a three-dimensional Euclidean
space, R3. Let r(t) be a parameterization of a continuous, differentiable curve C in a
Euclidean space R3. Let us denote T(t), N(t) and B(t) as the unit tangent vector, the
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unit normal vector and the unit binormal vector respectively. Let us denote also the
curvature as κ(t) and the torsion as τ(t), the Frenet-Serret formulae are:

T′(t) = κ(t)|r′(t)|N(t) (4)

N′(t) = −κ(t)|r′(t)|T(t) + τ(t)|r′(t)|B(t) (5)

B′(t) = −τ(t)|r′(t)|N(t) (6)
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Fig. 4: Top left - Main components of the robot formation algorithm. Top right -
Reference geometric definition of a simple, triangle-shaped robot formation, note that
the definition is based on vectors u and v (tangential and perpendicular to the path,
respectively). Bottom left - Behaviour of the partial goals depending on the leader’s
pose. Bottom right - Behaviour of the partial goals depending on the obstacles in the
environment.

Fig. 5: The red vector represents the tangent to the trajectory and the red circle is the
perpendicular plane to this vector.
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The Frenet-Serret frame is defined by the collection of the three vector functions
T(t), N(t) and B(t) which satisfy the following fundamental relations:

T(t) =
r′(t)
|r′(t)| N(t) =

T′(t)
|T′(t)| B(t) = T(t) × N(t) (7)

The graphical representation of the Frenet trihedron at a certain point of a curve
has already been shown in figure 5, where the red vector is T(t), the blue vector is
N(t) and the green vector represents B(t). The main advantage of using the Frenet
trihedron is that among the infinite possible vectors perpendicular to the tangent vec-
tor, the one chosen is in the direction of the curvature N (or normal acceleration).
Furthermore, the direction of the vectors in the frame change continuously, this is an
important property when using it as a reference for the geometry formation, in order
to have smooth changes in its shape. So, from a formation control point of view, by
combining vectors T, N and B any shape can be given to the formation. One example
of a quadrangular pyramid shaped formation is depicted in figure 6.

Frenet 
trihedron

T
N

B

Leader's path

Leader

Partial
goals

Followers

Followers' paths

T
N

B

-d1*T + d2*B

-d1*T - d3*N

-d1*T - d2*B

-d1*T + d3*N

Fig. 6: Schemas of the definition of the geometry in 3D based on the Frenet trihedron.
Robots are represented by rectangles, red for the leader and blue for the followers.
Attached to the leader, the Frenet trihedron is represented by 3-axes frame in which
the tangential vector is drawn in red, the normal vector in blue and the binormal
vector in green. The leader’s path is represented by a grey line. The follower’s paths
start from the robot position and go until circles that represent their partial positions.
These paths shown as blue and green lines, the difference in colour is only for helping
in the visualization. Partial goals for the follower robots are computed with respect
to the Frenet trihedron, as indicated in the right part of the figure.

3.2 Grey-level-based shape deformation

As explained before, although the formation is predefined by geometric equations,
this shape cannot be exactly the same along all the path because this could lead to
collisions with obstacles. Therefore, when the formation gets close to obstacles, the
positions of the robots in the formation should be modified in order to adapt the ini-
tial shape to the obstacles in the environment. The proposed method achieves this
by modifying the distances of the default geometry. The manner these distances are
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modified will determine the behaviour of the formation. Figure 7 shows simple defor-
mation rules than can be used. The value max represents the distances of the original
shape and min the minimum distances the formation will deform into. In this case, for
the distances in directions parallel to the Frenet trihedron vectors B and N, namely
dB and dN , the behaviour is the same: since the less grey level means the closer to
obstacles, the distances in these directions have to decrease towards the minimum
(which is never reached since it would mean a collision among the followers). This
behaviour provokes the follower robots to get closer to the leader’s path, which is
collision free.

In very narrow environments, this deformation rule can make the robots to suf-
fer an excessive contraction towards the leader’s path. Although this contraction is
limited, it can still be very dangerous for the robots to move too close to each other.
Besides, if the environment is narrow enough, this limit in the contraction could lead
to a collision of the followers with the environment. In this case, priorities are intro-
duced in the formation by modifying the distance in the direction parallel to vector
T, dT . This behaviour is achieved with a different variation of the distance for each
robot. According to figure 7, follower 4 will not modify its distance, while follower 1
will be the one which gets closest to the leader. Therefore, highest priority is given by
a higher slope in this function. This deformation rule allows the formation to contract
as much as needed so that the obstacles are avoided. The behaviour of the followers
can be modified by setting different functions to define the shape changes.
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dB
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N

0 1
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Fig. 7: Followers’ partial goals modification based on linear functions.

3.3 Mobile obstacles modelling based on grey level map

In the work presented in [21], only static environments were considered, however, this
is not always the case in the real world. In order to take into account mobile obstacles,
a grey-level-based model of the obstacles has been developed. This technique deals,
not only with the position of the obstacles, but also with their uncertainty which could
exist due to, for example, sensor noise.

Let us consider a mobile obstacle Oi with position Pi = [xi, yi, zi] and uncertainty
Ui, where i is the number of obstacles and Ui is 0 ≤ Ui ≤ 1, being Ui = 1 the
maximum uncertainty. This uncertainty level models the noise and inaccuracies of
the sensors used for obstacle detection and modelling, since it is used to create areas
around the objects in which we cannot assure whether there is an obstacle or not.
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Note that the aim is not to create an accurate error model for a given sensor, but
to create a sensor-independent algorithm. This uncertainty could be understood as a
safety parameter. Besides, the obstacles can be modelled differently, depending on
the desired degree of accuracy. In the most simple case, a bounding box [35,36]
containing the obstacle is created. Other possibility can be modelling the objects
using one or several superquadric functions [37,38]. In any of these cases, a local 3D
grid map around each mobile obstacle is created. In this map, we model the obstacle
by filling with ones the voxels that correspond to the shape of the chosen model of
the obstacle. The accuracy of this model is limited by resolution of the grid. For this
example, we will consider a punctual obstacle as can be seen in figure 8, top-left.
The rest of the voxels of the local map will have zero values, meaning that they are
free locations. Now, if we compute the FMM over this map, we will get the distance
transform function, as we can see in figure 8, top-right, in which the locations around
the obstacle have a greater grey-scale value than those further from it. This drop of
the grey level value can be interpreted as the uncertainty, in which higher values mean
a higher likelihood of the voxel to be occupied by the obstacle. Now, this map can
be saturated with the value given in Ui to control the level of uncertainty. Then, the
values in the map are scaled between 0 and 1. Figure 8, bottom, shows the final step
of the local map computation for two different uncertainty values. It can be seen how
the uncertainty value Ui allows us to control the area of influence of the obstacle.
Finally, the obstacle must be introduced in the environment so that it is taken into
account by the leader and the followers in the formation. This is done by applying
equation 8 among the voxels of the local map of the obstacle, and the corresponding
voxels around its position Pi in the velocities map of the environment. This results
into areas around the obstacles that have a velocity value close to zero, which are
avoided with the use of the FM2 path planning method.

W j = min(W j, obstacle) (8)

where j corresponds to the voxels where the function is applied.

3.4 Formation planning algorithm

In previous sections the low-level modules of the proposed framework have been
detailed. Next, these steps are put together into a high-level algorithm, depicted in
figure 9. This algorithm assumes that the following information is available at the
beginning: a voxelised binary model of the environment; the initial and the goal po-
sitions of the leader; the default shape of the formation; the size, uncertainty value,
initial position and velocity along the simulation (or the full path) of the mobile obsta-
cles in the environment. It is important to note that a static goal is being considered.
A simple replanning approach would not be enough since goal modifications could
require the formation to carry out complex maneuvers. Once all the data is provided,
it is processed following the steps shown in figure 9, which are explained next:
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Fig. 8: Process of the computation of the grey-level based model of an obstacle with
different uncertainty value. Top left - Local 3D map with a punctual obstacle. Top
right - Central slices of the 3D grid representing the distance transform function of the
obstacle in the local map. Bottom images: final result after saturation and re-scaling,
left U = 0.3 and right U = 0.6. It is important to note that the furthest positions in
the grey scale images should be white, but they have been plotted in black to help the
visualization.

(a) The environment map W0 is read as a binary map, in which 1 (white) means that
the position is occupied by an obstacle and 0 (black) means it is free space. This
map is common for all the robots in the formation (both the leader and followers).

(b) The first potential W is calculated applying the FMM to the binary map W0,
according to the FMM 1st step of the FM2. This potential is also shared by all
the robots.

(c) The second potential D is calculated applying the FMM on the potential W from
the goal point to the leader’s initial position.

(d) A path for the leader is calculated applying gradient descent on the potential D,
according to the FM2 method. In the case of static environments, this path never
changes.

(e) Once we have a path for the leader of the formation, a loop covering this path is
executed. In this loop, each cycle represents a step of the robots’ movement. It
consists of the next steps:

I Since we have mobile obstacles, for each cycle t the position of every obsta-
cle is updated both in the binary map W0, for visualization purposes, and in
the first potential W, so that they are taken into account by the robots in the
formation, as explained in section 3.3.
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Fig. 9: Robot formation path planning algorithm using FM2.

II The second potential D is updated, so that the changes in W are taken into
account.

III A new path for the leader is calculated applying gradient descent on the
new potential D, according to the FM2 method. Since the environment is
dynamic, the previous path that was computed for the leader of the formation
may not be safe any more, and so it needs to be recomputed every time any
of the obstacles move.

IV According to the new pose of the leader and the default formation geom-
etry, the partial goal (xg f , yg f , zg f ) is calculated for each follower f (where
f represents every follower in the formation). Initial partial goals are com-
puted with the predefined geometry referenced to the Frenet’s trihedron, as
explained in section 3.2.
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V The grey level, in W, of the partial goal position of each follower f is used in
order to recompute this goal, as detailed in section 3.1. Therefore, the shape
of the formation is deformed so that the robots move further from obstacles.

VI The second potential Dt
i is locally calculated for each follower f , applying

the FMM to velocities map W. The goal point each follower uses is their
partial goal computed on the previous step. The low computational cost of
FM2 allows us to do this without compromising the refresh rate.

VII The path is calculated for each follower f . This path is the one with the
minimum distance with the metrics Wt

i and it is obtained applying gradient
descent on the potential Dt

i.
VIII All the robots move forward following their paths until a new iteration is

completed.

4 Results

According to the previously introduced algorithm, different simulations have been
carried out in order to prove the validity of the proposed method. All of them are
based on Matlab R© implementations of the algorithm running on a Linux-based op-
erating system in a 2.2 GHz dual-core PC (only one core was used). Simulations
perform only kinematic simulation, meaning that we do not consider any specific dy-
namic model of the UAVs, and that a perfect path following algorithm is assumed
for all the UAVs. In all the cases, the map of the environment is known in advance.
Besides, both the initial and the final points of the trajectory are given, and the paths
are calculated with the FM2 algorithm. To calculate the partial goals of the follow-
ers, a default shape is previously set. This shape evolves by modifying height of the
pyramid and the size of the base. In very narrow situations in which making the size
of the base really small could lead to dangerous situations, the followers will evolve
into a convoy-like formation increasing the safety. These changes are produced as a
function of the grey level of the position of the leader and the followers, as explained
in 3.2. In the case of the moving obstacles, both the initial positions and their velocity
are also known, although some uncertainty is introduced as explained in 3.3.

While in previous works, only visual results of the simulation are given, in this re-
search a quantitative analysis of the performance of the formation planning algorithm
is shown. Two different criteria have been proposed: first, the distance of each robot
to the closest obstacle along all the path is evaluated. This is a common criteria used
in mobile robotics planning and gives us an idea of how safe is a path with respect
to the distance to the obstacles in the environment. In our simulations, it is impor-
tant to study the safety of the results since the algorithms are tested in very narrow
environments and with dynamic obstacles. The second metric measures how much
the shape of the formation changes with respect to the initial geometry. It consists on
evaluating the average displacement of each robot in the formation from their default
relative position, to their final pose determined by the shape deformation algorithm
introduced in this paper. It is computed using equation 9:
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Fig. 10: Example of a motion sequence in a narrow corridor, leveraging the priorities
introduced in the algorithm. Top: 3D view. Bottom: top-view which allows to see
how the robots change their relative position in the direction of the motion.

E =
1
N

N∑
i=1

dist(pi, d pi) (9)

where N is the number of follower robots, dist corresponds to the Euclidean distance
in 3D, pi is the computed position for follower i and d pi is the predefined position
of the same robot.

The first simulation environment is shown in figure 10. It consists of two rooms
connected by means of a very narrow passage in which the formation does not fit
without some amount of shrinking. In this example, we can see how the concept of
priorities is inserted in the algorithm since the formation evolves towards a convoy-
like geometry in which the followers are assigned with a different priority value. This
is done by modifying the height of the pyramid (distance in the tangential direction)
with a different value for each robot, so that it is possible to get extra space between
followers. At the same time, the size of the base changes in a way that makes the
followers to almost converge into a straight line.

Besides, quantitative analysis according to the metrics aforementioned is shown
in figure 11. The top image shows the distance to the closest obstacle for each robot.
Although there is a legend in the image, the colour of each line is the same as the
colour assigned for the robot in figure 10, and the leader’s information is plotted in
blue. Horizontal axis corresponds to the steps of the path, being 0 and 64 the start
and final pose respectively. Vertical axis shows the distance to the closest obstacle.



16 David Álvarez et al.

0 10 20 30 40 50 60 70
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration of the algorithm

D
is

ta
nc

e 
to

 th
e 

cl
os

es
t o

bs
ta

cl
e

leader follower1 follower2 follower3 follower4

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

9

10

Iteration of the algorithm

A
v
e
ra

g
e
 d

is
p
la

c
e
m

e
n
t

Fig. 11: Quantitative analysis of scenario 1. Top: distance to the closest obstacle.
Bottom: average displacement of the formation with respect to the default shape of
the formation.

This value is normalised, meaning that a 0 value corresponds to a collision with an
obstacle, and a 1 value means the maximum clearance a robot can have in the whole
environment. We can observe that, at the beginning, the robots move to a more open
space (clearance grows) which corresponds to the movement towards the centre of the
first room. Then, the distance gets smaller while the robots approach to the passage,
and reaches a minimum value while moving through it. Finally, it grows again while
entering in the second room, and becomes smaller when approaching to the goal,
which is close to the wall. In terms of deformation (figure 11 bottom), we can see
how its evolution is inversely proportional to the distance to the obstacles. This means
that when the space in narrower, the shape needs to be deformed in order to fit in the
space, which is the expected behaviour.

Figure 12 depicts the results of the same algorithm run in a map of one of the
laboratories of our university, in order to show that the proposed algorithm performs
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Fig. 12: Example of a motion sequence in a map of one of our laboratories. Two
robots (blue and red) move in parallel to a virtual leader (green).

well in realistic environments. In this case, the formation is composed by two follow-
ers placed in parallel along the normal vector to the leader. Therefore, the formation
is actually the 2 robots navigating with the leader placed in the straight line that con-
nects the followers. In this case, the leader is considered virtual in order to show the
flexibility of the approach. The only deformation allowed is along the normal vector.

The corresponding quantitative results are shown in figure 13. The distances be-
tween robots and obstacles are safe and there is not any collision. This performance
is remarkable given how cluttered the scenario is.

The next scenario is shown in figure 14. In this case a sequence of positions
along the path can be seen. The environment is composed by two big empty rooms
connected by a narrow window. Moreover, in the second room there are two mobile
obstacles, represented by black balls. These obstacles are located in the same point
of the XY plane (floor plane), but at different heights. They move parallel to the floor
towards the wall between the rooms. As we can see in the sequence, as explained
in section 3.3, the path is different for each step since a new one is calculated at the
beginning of it. One can appreciate how during the firsts steps, the path surrounds the
obstacles using the space on the left side (from the robots point of view), however,
after the robots have passed through the window (at which the formation shrinks
in the same way as in the passage in the previous environment) the obstacles move
forward and come closer to the wall. This implies that there is more free space on
the right side of the obstacles, so the path of the leader changes the side the robots
use to avoid the obstacles. Nevertheless, even though the leader eludes the obstacles
because of this change, the followers still have to skip the collision. As one can see
from the 5th to the 8th images in figure 14, the follower plotted in light blue can
avoid the moving obstacles just by following the same shape deformation algorithm
used for static environments. This happens because the obstacles are included in the
velocities map as explained in section 3.3, so that they cause the same behaviour as
static obstacles. It is important to note, that in the 7th image, although the light blue
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Fig. 13: Quantitative analysis of scenario 2. Top: distance to the closest obstacle.
Bottom: average displacement of the formation with respect to the default shape of
the formation.

follower seems to collide with the obstacle, it is just a matter of the perspective used
in the visualization.

Moreover, the same quantitative analysis has been applied to this scenario, it is
shown in figure 15. As before, the colours in the figure correspond to the same colour
of the robots in the simulations. In the case of the distance to obstacles, it can be
seen that the value of all the robots decreases towards 0 when they go through the
window, and increases afterward. The obstacles do not affect significantly to this
values because of the change in the path and the shape deformation movement. In the
case of the shape deformation result, it can be seen that there is a very big change
in the shape when the robots go through the window and a slight one when they
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Fig. 14: Environment with mobile obstacles. The temporal evolution starts in the top-
left image and ends in the bottom-right image.



20 David Álvarez et al.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration of the algortihm

D
is

ta
n

c
e

 t
o

 t
h

e
 c

lo
s
e

s
t 

o
b

s
ta

c
le

 

 

leader follower1 follower2 follower3 follower4

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

Iteration of the algorithm

A
ve

ra
ge

 d
is

pl
ac

em
en

t

Fig. 15: Quantitative analysis of scenario 3. Top: distance to the closest obstacle.
Bottom: average displacement of the formation with respect to the default shape of
the formation.

need to avoid the obstacles and arrive to the goal, which is close to the walls of the
environment.

Finally, table 1 shows the mean computation times µ and their standard deviation
σ for the three previous experiments. For all the experiments the average and stan-
dard deviation have been computed over ten different runs of the algorithm. The first
column shows the time elapsed in leader’s path computations. These times depend on
the environment chosen, specially on the amount of obstacles in them. They are the
most time consuming part of the algorithm. The second column includes formation
algorithm times per iteration, which are really fast and could be run in real time with
frequencies higher than 1000Hz. Third column contains the times elapsed for all the
followers to compute the path to its partial objectives per iteration. It depends on the
number of followers, but one can see that for 4 followers the computation time is
stil around 500ms, so it can be computed online. Note that this can be easily paralel-
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lised since every follower computes its own path. Be aware the that the first and third
columns are expressed in seconds, while the second is in milliseconds. Also note that
the algorithm is completely deterministic, which means that the computations times
suffer low variation among runs. Another important remark is that iteration times for
experiments 1 and 2 are practically the same, despite the fact that experiment 1 in-
cludes 4 followers and experiment 2 only 2. However, experiment 3 needs more time
per iteration since the mobile obstacles have to be taken into account as explained in
section 3.3. Again, this process could be easily parallelised for every follower reduc-
ing considerably the required time.

Table 1: Computation times for the leader’s paths, formation algorithm iterations and
followers’ paths.

Leader’s times (s) Iteration times (ms) Followers’ times (s)
µ σ µ σ µ σ

Exp. 1 0.47 0.01 0.22 0.09 0.49 0.03
Exp. 2 0.99 0.1 0.25 0.09 0.44 0.04
Exp. 3 0.65 0.04 10 2 0.52 0.02

5 Conclusions

This research broadens the work presented in [21], for 3D robot formation motion
planning, including the necessary changes to apply the algorithm to non-static envi-
ronments. Besides, it introduces a novel approach to model mobile obstacles in the
environment in a way that they are, later on, easily treated by the obstacle avoidance
algorithm explained. Finally, quantitative analysis of this approach has been carried
out. The results explain how the formation evolves avoiding obstacles while cover-
ing the planned path. The tests show that the proposed shape deformation method,
in combination with the FM2 path planner, is robust enough to manage autonomous
movements through an indoor static and dynamic 3D environment.

It is important to note that the algorithm is both conceptually and mathematically
very simple since it relies on basic natural behaviours such as light movement. Fur-
thermore, the same method is applied in the planning phase for both the leader and
the followers. Besides, the deformation schema for the geometry of the robot forma-
tion is based on basic 3D translations and rotations which can be computed very fast
using standard algebraic tools.

Results show that the proposed algorithm is able to manage difficult environ-
ments, modifying the formation when it is necessary. In addition, this approach al-
lows us to include any number of robots in the formation, by only setting the desired
position with respect to the leader or the other robots. The introduction of function-
based geometry deformation is very powerful since it permits setting very complex
behaviours to the followers by simply modifying the functions. As an example of
this, the use of priorities in the formation is showed. These functions can be modified
dynamically, an important property that is worthy to explore in the future.
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Future work in 3D robot formation using FM2 is also related to testing this method
with other type of formations in which, for example, the leader is not always in front
of the team. Also, future simulation should include dynamics in order to prove that
the computed paths are smooth enough to be applied to real robots. Besides, the
possibility of a goal position change should be included in the high-level formation
algorithm, so that the algorithm allows to have dynamic goals and the replanning is
able to compute the necessary maneuvers to achieve them.
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