
1

Fast Marching Methods in Path Planning
Alberto Valero-Gomez, Javier V. Gomez, Santiago Garrido, Luis Moreno

Abstract—This paper gives a detailed overview of fast march-
ing methods for path planning. The paper recalls some of the
methods developed by the authors of this work in the recent
years and presents two new methods: the saturated fast marching
square (FM2), and an heuristic modification called fast marching
star (FM2*). The saturated variation of the existing FM2 provides
safe paths which avoid unnecessary long trajectories to keep
far from obstacles (like in the Voronoi Diagram computed
trajectories). The FM2* reduces considerably the computation
time. As a result the method provides not only a trajectory, but
also an associated control speed for the robot at each point of
the trajectory. This path is optimal in completion time.

Index Terms—Path Planning, Mobile Robots, Fast Marching,
Heuristic

I. INTRODUCTION

The path planning is a well-known problem, with a well-
understood mathematical basis, which has already lots of
approaches which successfully provide good enough solutions,
but always depending on the final application. The character-
istics of the paths provided by the different existing algorithms
change if the path planning is focused on video games artificial
intelligence, mobile robots, UAVs, etc.

The path planning objective has changed since the first
approaches were proposed. In the beginning the objective was
to create an algorithm able to find a path from a initial point to
a goal point ensuring completeness (the algorithm would find
a path if it exists). Since this objective has been largely solved
(i. e. Dijkstra algorithm) and the computational capacity has
increased exponentially the objective has become eager: the
current objective is to find the shortest path, or the fastest
one, even maintaining safety constraints. These solutions are
also expected to provide smooth, human-like paths.

There are many different path planning algorithms pro-
posed. LaValle proposes a classification into 2 big groups
depending on the way the information is discretized [1]:
Combinatorial Planning, which constructs structures which
capture all the information needed in path planning [2], [3] and
Sampling-Based Planning, which incrementally search in the
space for a solution using a collision detection algorithm [3].
In the first group the most widespread methods are those based
in road maps which mainly consist on obtaining precalculated
short paths from the map (road map) and creating the path
by taking the sections of the road map needed (referencias).
In the second group, there are very different options: rapidly
exploring random trees (RRTs) [4] provide a fast solution
based on creating randomly branches from a initial point, those
branches which are collision-free are stored and new branches
are created iteratively since the goal point is reached. Other

Alberto Valero-Gomez, Javier V. Gomez, Santiago Garrido and Luis
Moreno are with the Robotics Laboratory of Universidad Carlos III de Madrid,
Spain. alberto.valero@uc3m.es

option is to model the environment in a occupancy gridmap
and apply search algorithms such Dijkstra or A* using each
cell as nodes. Also, there are potential fields based approaches
[5] in which treats the robot as a particle under the influence
of a artificial potential field.

This paper focuses on these potential field based algorithms
(sampling-based algorithm). These methods are based on
creating artificial potential fields from the sampled information
through sensors and obtaining the path from the characteristics
of these fields. The main problem of these methods are that
they can have local minima which provokes the path to fall
in those minima not being able to find a path even if it
exists. The Fast Marching Method can be applied to create the
potential fields and to obtain artificial local minima free fields,
solving one of the most important drawback of these path
planning methods. The authors have applied the Fast Marching
method successfully combining in with a Voronoi diagram [6]
or applying the Fast Marching method iteratively [7].

This document is organized as follows: in section II in-
troduces the Fast Marching Method, its formulation, imple-
mentation and first approaches to path planning solving. In
section IV the Fast Marching Square methods are outlined
and a new variation is introduced: Fast Marching Square - Star
Method. Next, in the section V the results of the new proposed
method are shown in comparison with the Fast Marching
Square Method. Finally, in section VI the conclusions are
extracted and the future work is indicated.

II. THE FAST MARCHING METHOD

The Fast Marching Method is a particular case of Level
Set Methods, initially developed by Osher and Sethian [8],
as an efficient computational numerical algorithm for tracking
and modeling the motion of a physical wave interface (front)
Γ. This method has been applied to different research fields
including computer graphics, medical imaging, computational
fluid dynamics, image processing, computation of trajectories,
etc. [9], [10], [11]. The interface can be a flat curve in 2D, or a
surface in 3D (but the mathematical model can be generalized
to n dimensions). The fast marching method calculates the
time T that a wave needs to reach every point of the space. The
wave can be originated from more than one point, each source
point originates one wave. Source points have an associated
time T = 0.

In the context of the Fast Marching Method we assume that
the front Γ evolves by motion in the normal direction. The
speed F does not have to be the same everywhere, but it is
always non-negative. At a given point, the motion of the front
is described by the equation known as the Eikonal equation
(as given by Osher and Sethian [8]):

1 = F (x)|∇T (x)|

2

where x is the position, F (x) the expansion speed of the wave
at that position, and T (x) the time that the wave interface
requires to reach x.

The magnitude of the gradient of the arrival function T (x)
is inversely proportional to the velocity:

1

F
= |∇T |

Because the front can only expand (F > 0), the arrival time
T is single valued. Sethian proposed a discrete solution for
the Eikonal Equation [12]. In 2D the area is discretized using
a gridmap. We denotate i, j the row i and column j of the
gridmap, that corresponds to a point p(xi, yj) in the real world.
The discretization of the gradient ∇T according to [8] drives
to the following equation:

{
max(D−xij T, 0)2 + min(D+x

ij T, 0)2+

max(D−yij T, 0)2 + min(D+y
ij T, 0)2+

}
=

1

F ²
ij

(1)

In [12] Sethian proposes a simpler but less accurate solution
for Eq. 1, expressed as follows:{

max(D−xij T,−D+x
ij , 0)2+

max(D−yij T,−D+y
ij , 0)2

}
=

1

F ²
ij

(2)

where

D−xij =
Ti,j−Ti−1,j

4x

D+x
ij =

Ti+1,j−Ti,j

4x

D−yij =
Ti,j−Ti,j−1

4y

D+1
ij =

Ti,j+1−Ti,j

4y

(3)

and 4x and 4y are the grid spacing in the x and y directions.
Substituting Eq. 3 in Eq. 2 and making

T = Ti,j

T1 = min(Ti−1,j , Ti+1,j)
T2 = min(Ti,j−1, Ti,j+1)

(4)

we can rewrite the Eikonal Equation, for a discrete 2D space
as:

max

(
T − T1

4x
, 0

)2

+ max

(
T − T2

4y
, 0

)2

=
1

F 2
i,j

(5)

As we are assuming that the speed of the front is positive (F >
0) T must be greater than T1and T2whenever the front wave
has not already passed over the coordinates i, j. Consequently
Eq. 5 can be solved as the following quadratic:(

T − T1

4x

)2

+

(
T − T2

4y

)2

=
1

F 2
i,j

(6)

Whenever T > T1and T > T2 (we always take the greater
value of T when solving Eq. 6). If T < T1or T < T2, from
Eq. 5 the corresponding member is 0, and hence Eq. 5 is
reduced to: (

T − T1

4x

)
=

1

Fi,j
(7)

if T resulted to be smaller than T1when solving 6, or(
T − T2

4y

)
=

1

Fi,j
(8)

if T resulted to be smaller than T2when solving 6.
It is important, for the understanding of this paper, to high-

light a property of the waves expansion. The T (x) function
originated by a wave that grows from one single point presents
only a global minima at the source and no local minima. As
F > 0 the wave only grows (expansion), and hence, points
farther from the source have greater T . A local minima would
involve that a point has a T value lesser than a neighbor point
which is nearer to the source, which is impossible, as this
neighbor must have been reached by the wave before.

In the following section we are presenting in detail an
algorithm for solving the Eikonal Equation over a gridmap.

A. Implementation

Eq. 5 can be solved iteratively over a gridmap. For doing
so, the cells of the gridmap must be labeled of one of the
following types:
• Unknown: Cells whose T value is not known yet (the

wave front has not reached the cell).
• Narrow Band: Candidate cells to be part of the front wave

in the next iteration. They are assigned a T value that can
still change in future iterations of the algorithm.

• Frozen: Cells that have already been passed over by the
wave and hence their T value is fixed.

The algorithm has three stages: initialization, main loop, and
finalization. These stages are described bellow.

a) Initialization.: The algorithm starts by setting T = 0
in the cell or cells that originate the wave. These cells are
labeled as frozen. Afterward it labels all their Manhattan
neighbors as narrow band, computing T (Eq. 5) for each of
them.

b) Main Loop: In each iteration the algorithm will solve
the Eikonal Equation (Eq. 5) for the Manhattan neighbors (that
are not yet frozen) of the narrow band cell with the lesser T
value. This cell is then labeled as frozen. The narrow band
maintains an ordered list of its cells. Cells are ordered by
increasing T value (first cells have lesser T values).

c) Finalization: When all the cells are frozen (the narrow
band is empty) the algorithm finishes.

We can see the process in Figures II-A0c and II-A0c. In Fig.
II-A0c the wave is originated from one point. In II-A0c there
are two wave sources. Black points are frozen, and their T
value will not change. Gray points are the narrow band, while
white ones are unknown. As it can be appreciated the waves
grow concentric to the source. In Fig. II-A0c they join, and
the waves develop themselves growing together. The iterative
process expands cells in the same order that the physical wave
grows, as cells with less T are expanded first, that is, if two
cells have a different arrival time, the cell that is reached before
by the front wave is expanded first.

If we consider T as the third dimension over the z axis, the
result of completing the wave expansion of Figures II-A0c
and II-A0c results in Figures 3a and 3b respectively. As it

3

(a) (b) (c)

(d) (e) (f)

Figure 1. Iterative Wave Expansion with 1 Source Point

(a) (b) (c)

(d) (e) (f)

Figure 2. Iterative Wave Expansion with 2 Source Points

was supposed to happen, as F > 0, when we get far from
the sources the time T required to reach the point is greater
(higher on the z axis). It can be appreciated that with one
single source, there is only one minima at the source. With
more than one source we have a minima at each source with
T = 0.

(a) One source point (b) Two source points

Figure 3. Fast Marching Method applied over a 50x50 Gridmap

The algorithm is shown in Alg. 1.

III. FAST MARCHING AND PATH PLANNING

Let us consider a binary gridmap, in which obstacles are
valued as 0, and free space as 1. These values can be taken as

input : A gridmap G of size m× n
input : The set of cells Ori where the wave is originated
output: The gridmap G with the T value set for all cells

Initialization;
foreach gij ∈ Ori do

gij .T ← 0;
gij .state← FROZEN;
foreach gkl ∈ gij .neighbours do

if gkl = FROZEN then skip; else
gkl.T ← solveEikonal(gkl);
if gkl.state = NARROW BAND then
narrow_band.update_position(g_kl);
if gkl.state = UNKNOWN then

gkl.state← NARROW BAND;
narrow_band.insert_in_position(gkl);

end
end

end

Iterations;
while narrow_band NOT EMPTY do

gij ← narrow_band.popf irst();
foreach gkl ∈ gij .neighbours do

if gkl = FROZEN then skip; else
gkl.T ← solveEikonal(gkl);
if gkl.state = NARROW BAND then
narrow_band.update_position(g_kl);
if gkl.state = UNKNOWN then

gkl.state← NARROW BAND;
narrow_band.insert_in_position(gkl);

end
end

end
end

end
Algorithm 1: Fast Marching Algorithm

the wave expansion speed F over the gridmap. At obstacles,
wave expansion speed is 0, as the wave cannot go through
obstacles, and on free space, wave expansion speed is constant
and equals to 1. If we want to compute the path between two
points p0 and p1 we could expand a wave from p1 until it
reaches p0. Due to the wave expansion properties, the path
that has followed the wave interface from the target to the
source point will be always the shortest trajectory in time.
As the wave expansion speed is constant, this trajectory is
also the shortest solution in distance. The wave is originated
from the target point, hence, the computed T (x) field will
have only one minima at the target point. Hence, following
the maximum gradient direction from the initial point we will
reach the target point, obtaining the trajectory. This solution
is unique and complete.

Fig. 4 shows an example. We want to trace the shortest path
from po to p1. Fig. 4b shows the wave expansion in gray scale,
the further the interface is from the target, the clearer the map
becomes. Once the interface Γ has reached the initial point p0
the algorithm stops expanding.

4

The resulting gridmap stores at any pixel the time T
required by the front wave to reach that pixel. The isocurves
join together all the points that have been passed through
at the same instant of time (Fig. 4d). These curves are the
trace of the front wave. If we compute the maximum gradient
direction at any point of the gridmap we obtain the normal
direction to the isocurve, that is, the direction the curve has
followed when expanding. The maximum gradient direction is
computed applying the Sobel operator over the gridmap.

gradx =

−1 0 1
−2 0 2
−1 0 1

 ? L

grady =

 1 2 1
0 0 0
−1 −2 −1

 ? L

For tracing the path between po and p1 we just need to
follow the maximum gradient direction starting at p0. The path
is computed iteratively. gradix and gradiy are computed at
every point pi. From pi is computed pi+1 and successively
until arriving to p1. As p1is located at the global minima it is
always reached (whenever there is path).

modi =
√
grad2ix + grad2iy

alphai = arctan(
gradiy

gradix
)

p(i+1)x = pix + modi · cos(alphai)
p(i+1)y = piy + modi · sin(alphai)

In Figs. 4c and 4d we appreciate that the created field has
just one global minima at p1, and hence the solution is unique
and complete.

A. FM over Voronoi Diagram

The path calculated previously, even if the shortest in length,
might not be a safe path as it gets close to the obstacles.
This aspect also causes that it is not the shortest in time, as
the robot has to go slowly when it is close to the obstacles
(in order to avoid collisions or risky movements). The usual
solution is to expand obstacles before calculating the path.
Nonetheless, when a robot moves through a door, we would
like to pass through the middle and not touching the wall, the
same holds for corners, etc. A variation method consists of
calculating before had the Voronoi Diagram and then compute
the FM method over it. As the Voronoi Diagram stays far from
obstacles we providing safe paths.

The Voronoi Diagram is used as a way to obtain a roadmap
of the map. Then the Fast Marching method is used to search
the path over the Voronoi Diagram. The main steps of this
method are the followings:

1) Map preprocessing. The map is turned into a binary grid
map, where the obstacles are black (value 0) and the
clear space is white (value 1). The obstacles and walls
are enlarged in order to ensure the robot will neither
collide with walls and obstacles nor accept passages
narrower than its size. Also, an averaging filter is applied
with the objective of erase small hairs of the diagram.

(a) Original Map

(b) Path and Wave Expansion in Gray Scale

(c) Fast Marching Field. One Unique Global Minimum

(d) Fast Marching Field. Isometric Curves

Figure 4. Fast Marching and Path Planning

2) Voronoi Diagram. The diagram is obtained using mor-
phological image processing techniques (concretely the
methods proposed by Breu in 2D [13]) as shown in
Fig. 5a. A dilatation of the diagram is done getting a
thickened Voronoi Diagram (Fig. 5b) wherein to apply
the Fast Marching method.

3) Fast Marching. The Fast Marching method is used to
expand a wave from the target to the initial point on

5

the thickened voronoi diagram. As a result we have a
potential field over the thickened voronoi diagram (Fig.
5c).

4) Path extraction. The gradient method is applied to the
previously obtained potential from the current position
of the robot and the goal point as the final point as shown
in Fig. 5d.

Fig.5 shows the main aspects of this algorithm when it is
applied to the map shown in Fig.4a.

(a) Voronoi Diagram Over the Initial Map

(b) Thickened Voronoi Diagram

(c) Fast Marching and Path over Voronoi Diagram

(d) Path

Figure 5. Fast Marching over the Voronoi Diagram

IV. FM-SQUARE AND FM-SQUARE-STAR

As an alternative to the simple Fast Marching Method and
the Voronoi Diagram Method for computing trajectories, we
are introducing three different methods based exclusively on
Fast Marching: 1) the Fast Marching Square (FM2), 2) the
saturated FM2 variation, and 3) an heuristic modification of
it, called Fast Marching Square Star (FM2*) method. We will
show how the FM2* reduces the computation time wrt. the
FM2 while providing the same trajectory.

A. FM2: Fast Marching Square

If we take an evidence gridmap in which obstacles are
labeled as 0 and free space as 1. We can apply the Fast
Marching Method to this map being all the obstacles a wave
source. In the previous section, there was just one wave source,
at the target point. Here all the obstacles are a source of the
wave, and hence, several waves are being expanded at the same
time. The map resulting of applying this wave expansion to
the map depicted in Fig. 4a can be seen in Fig. 6a. We have
called the resulting map fast marching gridmap (FMGridMap);
it represents a potential field of the original map. As pixels
get far from the obstacles, the computed T value is greater.
This map can be seen as a slowness map. If we consider the
T value as a measure proportional to the maximum allowed
speed of the robot at each point, we can appreciate that speeds
are lower when the pixel is close to the obstacles, and greater
far from them. In fact, a robot whose speed at each point
is given by the T value will never collide, as T → 0 when
approaching the obstacles. Making an appropriate scaling of
the FMGridMap cell values to the robot allowed speeds, we
have then the slowness map, that provides a safe speed for
the robot at any point of the environment. In Fig. 6c we can
appreciate the speeds profile. In the image is clear that speeds
become greater far from the obstacles.

We could calculate now the path as we did in Section III
but instead of taking a constant value for the expansion speed
F , we use the speed given by the slowness map. Now, if we
expand a wave from one point of the gridmap, considering
that the expansion speed F (x, y) = T (x, y), being F (x, y) the
speed at point x, y and T (x, y) the value of the FMGridMap
at x, y, we will have that the expansion speed depends on
the position, and it is precisely the safe speed given by the
slowness map. As the slowness map provides the maximum
safe speed of the robot, the obtained trajectory is the fastest
path (in time) assuming the robot moves at the maximum
allowed speed at every point.

Previously to the FM2 method, the authors of this work
developed a similar method called Voronoi Fast Marching
(VFM) [14]. The intuition of this method is the same as
FM2: get a first potential (slowness or viscosity potential)
and propagate a wave over this potential creating a second
potential in which the path is obtained. The main change
is the way of obtaining the first potential. In VFM the first
potential is obtained using the Extended Voronoi Transform
which assigns a value to each cell of the grid map proportional
to the Euclidean distance of that cell to the closest obstacle in
the environment.

6

(a) FMGridMap (b) Saturated FMGridMap

(c) 3D Representation (d) 3D Representation

(e) Second Fast Marching and Computed Path (f) Second Fast Marching and Path

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Distance

S
p

e
e

d
 (

m
/s

)

(g) Speed Profile

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Distance

S
p

e
e

d
 (

m
/s

)

(h) Speed Profile

Figure 6. FM2 and Saturated FM2

B. FM2: The Saturated Variation

In Fig. 6e we appreciate that the computed path is not the
logical/optimal trajectory we would expect (and the same holds
for Fig 5d). The FM2 computed path, as it has been presented,
tries to keep the trajectory far from obstacles. This computed
trajectory is similar to the path computed with the Voronoi
diagram [15] and presented above.

But there are environments in which there is no need to
follow the farther trajectory from obstacles, as distance may
be safe enough to navigate. To solve this we implemented
a saturated variation of the FMGridMap. When the first fast

marching has been computed, the FMGridMap is first scaled
and then saturated.

The scaling of the map is made according to two configu-
ration parameters:
• Maximum allowed speed, which is the maximum control

speed the robot may receive.
• Safe distance, which is the distance from the closest

obstacle at which the maximum speed can be reached.
At the end the map is saturated to the maximum allowed speed.
After this scaling and saturation process the slowness map
provides the maximum speed for all the points that are farther

7

than the safe distance from the obstacles and the control speed
varying form 0 (at obstacles) to the maximum speed (at safe
distance) for the rest of points.

Fig. 6b shows the saturated variation of Fig. 6e with the
new computed trajectory. We can appreciate that now the path
is as expected (Fig. 6b. In Fig. 6d the speed profile with the
saturated area is shown.

C. The Heuristic FM2: Fast Marching Square - Star

Consider the map of Fig. 7a in which a trajectory among
two points on a free space must be computed. Fig. 7b shows
the FM2 wave expansion originated from the target point. As
it can be appreciated the wave grows concentrically around the
target point until it reaches the initial point. The FM2* method
is an extension of the FM2 method. It tries to reduce the total
number of expanded cells (wave expansion) by incorporating
an heuristic estimate of the cost to get to the goal from a given
point.

The FM2* algorithm works in exactly the same way as the
FM2 algorithm. The only difference is the function used to sort
the narrow band queue. The FM2 sorts the narrow band cells
in increasing T order, so that in each iteration, first element
in the queue (lowest T) becomes frozen and it is expanded. In
FM2* the algorithm uses the cost-to-come T , which is known,
and the optimal cost-to-go, that is, the minimum time the robot
would employ to reach the target. This implies that the narrow
band queue is sorted by estimates of the optimal cost from the
given cell to the target. Whenever the optimal cost-to-go is
an underestimate of the real cost-to-go the algorithm will still
work. In fact, if we take the optimal cost-to-go as 0, the FM2*
algorithm is equivalent to the FM2 algorithm. If the estimation
is greater than the real cost-to-go, the FM2* algorithm could
take more computational steps than the FM2 to find the path
and the path could be not the shortest.

In this problem, the optimal cost-to-go (optimal time to
reach the target) would happen if the robot went straight
forward at maximum speed. This cost-to-go is given by
the Cartesian distance (minimum distance) divided by the
maximum speed the robot can reach. We know that the real
cost-to-go will be always greater than this computed value.
So, the narrow band queue is ordered according to the value
T ∗.

T ∗ = T +
cartesian_distance_to_target

robot_max_speed

These two methods are analogous to Djikstra and A* in path-
finding over graphs [3].

The wave expansion computed with FM2 and shown in Fig.
7b, computed with FM2* is shown in Fig. 7c.

V. RESULTS

Fig. 8 shows the resulting path from applying the FM2 and
FM2* over a realistic map of 50 x 18 square meters. The
gridmap has 500x180 pixels. Trajectories start by the center of
the map and go the right and to left of the gridmap respectively.
Fig. 8b shows the slowness map, computed with saturation, the
maximum speed is 1.5m/s and the safe distance 2 meters, that

(a) Original Grid Map

(b) Wave Expansion and Path with FM2

(c) Wave Expansion and Path with FM2*

Figure 7. Comparison between FM2 and FM2*

is, 2 meters away from the obstacles, the control speed will
be 1.5m/s. Figs. 8c, 8e show the computed trajectory and
the wave expansion field resulting of applying FM2. Figs. 8d
and 8f show the computed trajectory and the wave expansion
field resulting of applying FM2*. It can be appreciated that
the three paths are the same, but the FM2* heuristic reduces
the number of cells expanded. The computational times are:

Computation Time (seconds)
Trajectories FM2 FM2*

Figs. 8c and 8d 0.130669 0.032623
Figs. 8e and 8f 0.130914 0.031855
Figs. 8g and 8h 0.189093 0.147036

The third computed path has to expand almost all the map,
and hence computational times do not diverge too much. In
the most favorable case of the firs two trajectories, the time
gaining is more than four times.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have presented the mathematical founda-
tions of the Fast Marching Method (FM) developed by Osher

8

(a) Original Map (b) Saturated FMGridMap

(c) FM2 Computed Trajectory (d) FM2* Computed Trajectory

(e) FM2 Computed Trajectory (f) FM2* Computed Trajectory

(g) FM2 Computed Trajectory (h) FM2* Computed Trajectory

Figure 8. FM2 vs. FM2*

and Sethian [12]. We have presented the algorithm that we
have implemented for applying the FM over a gridmap. In
Section III it has been presented how the FM method can be
applied to compute the visibility path among two points in a
gridmap. The limitations of this methodology lays in the fact
that it provides the shortest path in distance, which leads to
risk due to its closeness to the obstacles. In Section IV the
Fast Marching Square Method (FM2) has been explained in
detail. The FM2 and all its variations have been developed
by the authors of this work. The FM2 computes two wave
expansions over the gridmap. The first expansion computes
the FMGridMap, a slowness map that provides the maximum
allowed speed of the robot at each point of the map. This
slowness map is used to compute the second expansion, form
the target point to the initial point. As a result of the second
expansion the trajectory is computed (using the maximum
gradient direction). This trajectory does not only provides a
way point but also the control speed at each point of the path,

due to this, this trajectory is safe and optimal in time. The FM2
computes path that tends to go the far from obstacles, but this
situation is not always necessary. A variation to the FM2 for
avoiding this problem was presented, called the saturated FM2.
To reduce the computation time of the FM2, a heuristic FM2,
called FM2-Star (FM2*) was presented. In the experimental
analysis it is shown that the computation time is reduced
up to 4 times regarding the FM2, while providing the same
trajectory.

The future work focuses on expand the FM2* to more
dimensions. Previous Fast Marching Methods as FM2 or
VFM have been applied successfully to higher level problems
such as outdoor path planning [16], robot formations motion
planning [17], exploration and SLAM [18], [19] but the
computational complexity of these method limited them to
2D problems (although different options have been already
suggested to decrease the computational complexity when
expanding to 3 or more dimensions). Now, since the FM2* is

9

faster those high-level problems can be approached expecting
computation times withing the problem solving framework.
The results obtained encourage to use the FM2* also in swarm
robotics or even in dynamic environments.

REFERENCES

[1] S. LaValle, “Motion planning,” Robotics Automation Magazine, IEEE,
vol. 18, no. 1, pp. 79–89, 2011.

[2] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Com-
putational Geometry: Algorithms and Applications, 3rd ed. Springer-
Verlag, 2008.

[3] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006. [Online]. Available: http://planning.cs.uiuc.edu/

[4] J. J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA ’00. IEEE International Conference on, vol. 2, 2000,
pp. 995–1001 vol.2.

[5] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” in Robots in Unstructured
Environments, 91 ICAR, Fifth International Conference on Advanced
Robotics, 1991., jun 1991, pp. 1012–1017 vol.2.

[6] S. Garrido, L. Moreno, and D. Blanco, “Voronoi diagram and fast
marching applied to path planning,” in Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on, may
2006, pp. 3049–3054.

[7] S. Garrido, L. Moreno, M. Abderrahim, and D. Blanco, “Fm 2: a real-
time sensor-based feedback controller for mobile robots,” I. J. Robotics
and Automation, vol. 24, no. 1, 2009.

[8] S. Osher and J. A. Sethian, “Fronts propagating with curvature de-
pendent speed: Algorithms based on hamilton-jacobi formulations,”
JOURNAL OF COMPUTATIONAL PHYSICS, vol. 79, no. 1, pp. 12–
49, 1988.

[9] S. Jbabdi, P. Bellec, R. Toro, J. Daunizeau, M. Pélégrini-Issac, and
H. Benali, “Accurate anisotropic fast marching for diffusion-based
geodesic tractography,” Int. J. Biomedical Imaging, vol. 2008, 2008.

[10] H. Li, Z. Xue, K. Cui, and S. T. C. Wong, “Diffusion tensor-based fast
marching for modeling human brain connectivity network,” Comp. Med.
Imag. and Graph., vol. 35, no. 3, pp. 167–178, 2011.

[11] K. Yang, M. Li, Y. Liu, and C. Jiang, “Multi-points fast marching: A
novel method for road extraction,” in The 18th International Conference
on Geoinformatics: GIScience in Change, Geoinformatics 2010, Peking
University, Beijing, China, June, 18-20, 2010, 2010, pp. 1–5.

[12] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cam-
bridge University Press, 1999.

[13] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, “Linear time euclidean
distance transform algorithms,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 17, pp. 529–533, 1995.

[14] S. Garrido, L. Moreno, D. Blanco, and M. l. Munoz, “Sensor-based
global planning for mobile robot navigation,” Robotica, vol. 25, pp.
189–199, 2007.

[15] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots. Scituate, MA, USA: Bradford Company, 2004.

[16] L. de Sanctis, S. Garrido, L. Moreno, and D. Blanco, “Outdoor motion
planning using fast marching,” in CLAWAR2009. Istambul, Turkey.,
September 2009.

[17] J. V. Gomez, S. Garrido, and L. Moreno, “Adaptive robot formations us-
ing fast marching square working under uncertainty conditions,” in IEEE
Workshop on Advanced Robotics and its Social Impacts (ARSO2011),
San Francisco, CA, USA., October 2011.

[18] S. Garrido, L. Moreno, and D. Blanco, “Exploration of 2d and 3d
environments using voronoi transform and fast marching method,”
Journal of Intelligent and Robotic Systems, vol. 55, no. 1, pp. 55–80,
2009.

[19] ——, “Exploration and mapping using the vfm motion planner,” IEEE
T. Instrumentation and Measurement, vol. 58, no. 8, pp. 2880–2892,
2009.

http://planning.cs.uiuc.edu/

	I Introduction
	II The Fast Marching Method
	II-A Implementation

	III Fast Marching and Path Planning
	III-A FM over Voronoi Diagram

	IV FM-Square and FM-Square-Star
	IV-A FM2: Fast Marching Square
	IV-B FM2: The Saturated Variation
	IV-C The Heuristic FM2: Fast Marching Square - Star

	V Results
	VI Conclusions and Further Work
	References

