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Javier V. Gómez, Alejandro Lumbier, Santiago Garrido and Luis Moreno

Robotics Lab., Carlos III University of Madrid, Spain
{jvgomez, alumbier, sgarrido, moreno}@ing.uc3m.es

Abstract

This paper presents a novel algorithm to solve the robot formation path
planning problem working under uncertainty conditions such as errors the
in robot’s positions, errors when sensing obstacles or walls, etc. The pro-
posed approach provides a solution based on a leader-followers architecture
(real or virtual leaders) with a prescribed formation geometry that adapts
dynamically to the environment. The algorithm described herein is able to
provide safe, collision-free paths, avoiding obstacles and deforming the geom-
etry of the formation when required by environmental conditions (e. g. narrow
passages). To obtain a better approach to the problem of robot formation
path planning the algorithm proposed includes uncertainties in obstacles’ and
robots’ positions. The algorithm applies the Fast Marching Square (FM2)
method to the path planning of mobile robot formations, which has been
proved to work fast and efficiently. The FM2 method is a path planning
method with no local minima that provides smooth and safe trajectories to
the robots creating a time function based on the properties of the propagation
of the electromagnetic waves and depending on the environment conditions.
This method allows to easily include the uncertainty reducing the computa-
tional cost significantly. The results presented here show that the proposed
algorithm allows the formation to react to both static and dynamic obstacles
with an easily changeable behavior.

Keywords: robot formation motion planning, path planning, formation
control, Fast Marching, Fast Marching Square, uncertainty
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1. Introduction

Due to their wide range of applications (surveillance, cooperative map-
ping, etc), robot formations have become one of the most insteresting topics
in robotics research. Although a single robot is currently able to perform
very complex tasks on its own, some of these tasks can be performed in a
more efficient way using a group of robots.

The main difficulty of robot formations is maintaining a pose (position
and orientation) for each individual robot depending on the poses of other
robots with a common objective to reach a desired goal. One of the main
problems is that the position of the robots is not totally accurate. This
uncertainty becomes dangerous when the formation must navigate through
narrow passages, sharp curves or in harsh environmental conditions. In these
situations, robots could crash into each other.

So far, different approaches have been proposed to solve the robot forma-
tion control problem. Beard et al [1] classify the different approaches in three
main groups: leader-following, where one robot is the leader and the rest are
followers. The leader motion can be determined by a calculated trajectory
or by teleoperation; and the followers’ motion is determined by tracking the
leader with some geometrical restrictions. This motion can change dynam-
ically over time, if necessary [2]. These leaders can be real robots or, as
proposed in [3], virtual leaders. The second proposed group is behavioral,
where several behaviors are weighted in order to give a motion plan to each
vehicle [4]. The third group is virtual structure, where the entire formation
is treated as a single structure, and its desired motion is translated into the
desired motion of each vehicle [5].

Many other works have been carried out, such as using virtual potential
fields to influence the location of each robot during movement in simple
formations [6] or in very populated groups [3]. Other techniques are based
on those virtual potentials, such as the inclusion of springs and dampers [7],
[8] to create virtual forces that are transformed into velocity commands.

Another criterion for classification is the rigidity of the formation geom-
etry. Two large groups can be distinguished: rigid formations, where the
geometry is fully specified and the motion control of each robot ensures that
this geometry is accurately achieved [9]. These approaches require a method
to switch between geometries when the environment demands it [10]. In dy-
namic formations, the geometric structure is can be distorted in the presence
of obstacles and environmental conditions [11].
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The algorithm proposed herein focuses on a dynamic leader-follower ar-
chitecture. In a previous paper [6], we tested how robot formations behave
under the Voronoi Fast Marching (VFM) method. The results obtained mo-
tivated an intensive study on how this method behaves when dealing with
uncertainty in the position of robots and obstacles. Furthermore, in this
paper the basic planning method is updated to the Fast Marching Square
(FM2) method [12]. FM2 is introduced in robot formations as an alternative
to the VFM method, including new advantages.

The rest of the paper is organized as follows. In Section 2, the FM2

algorithm is summarized. Section 3 explains how the FM2 is applied to
robot formations, proposing a basic algorithm and including variations to
this basic algorithm depeding on the objective. Results are also shown in
this section. Finally, conclusions and future work are pointed out in Section
4.

2. Fast Marching and Fast Marching Square

2.1. Introduction to Fast Marching and Level Sets

In 1996, J. Sethian proposed the Fast Marching (FM) algorithm to ap-
proximate the viscosity solution of the Eikonal equation (1) for every position
x. Although FM is applicable to any number of dimensions we focus on the
2D case. Therefore, lets assume a 2D map, where x = (x, y) is a point on the
map with the respective coordinates in relation to a Cartesian referential,
the frontwave arrival time function for every point of the map D(x) and the
velocity of the wave propagation W (x) in each point x. Lets also assume
that a wave starts propagating at x0 = (x0, y0) at time D(x0) = 0 and with
velocity W (x) ≥ 0. The Eikonal equation allows updating the time of arrival
the propagating frontwave D(x) at each point x of the map, in which the
propagation speed depends on the point W (x), according to:

|∇D(x)|W (x) = 1 (1)

The level set {x/D(x) = t} of the solution represents the wave front
advancing with a velocity W (x) for a certain medium. The resulting function
D(x) is a distance function, and if the velocity W (x) is constant, it can be
seen as the Euclidean distance function to a set of points from a given one,
usually the goal points. If the medium is non-homogeneous and the velocity
W (x) is not constant, the function D(x) represents the distance function
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measured with the metrics W (x) or the arrival time of the wave front to
point x.

The FM method is used to solve the Eikonal equation and is very sim-
ilar to the Dijkstra algorithm [13] that finds the shortest paths on graphs,
with the difference that FM is applied to continuous media. Using a gra-
dient descent on the distance function D(x), one is able to extract a good
approximation of the shortest path (geodesic) in various settings: Euclidean
distance with constant W (x) and a weighted Riemannian manifold with vary-
ing W (x).

Discretizing the gradient∇D(x) according to [14] it is possible to solve the
Eikonal equation at each point x, which corresponds to the row i and column
j of a grid map. Simplifying the notation as shown in (2), the equation (1)
becomes (3):

D1 = min(D(i− 1, j), D(i+ 1, j))
D2 = min(D(i, j − 1), D(i, j + 1))

(2)

(
D(i, j)−D1

∆x

)2

+

(
D(i, j)−D2

∆y

)2

=
1

W (i, j)2
(3)

The FM consists on solving equation (3) in which everything is given
except D(i, j). This process is iterative, starting at the source point of the
wave (or waves) where D(i0, j0) = 0. The following iteration solves the
value D(i, j) for the neighbours of the points solved in the previous iteration.
Using as an input a binary grid map, in which velocity W (i, j) = 0 (black)
means obstacle and W (i, j) = 1 (white) means free space, the output of the
algorithm is a map of distances as shown in Figure 1. These distances are
the time of arrival of the expanding wave at every point of the map.

In the case of more than one wave expanding, the same process is appli-
cable. In this case, there will be as many points with D(i0, j0) = 0 as waves
expanding. When two waves reach each other, the propagation continues as
if they were only one wave, as shown in Figure 2.

Finally, in Figure 3 an example of path planning with the FM method is
shown.

2.2. The Fast Marching Square Algorithm

The trajectories generated in the original work by Sethian [15] (see Fig-
ure 3) on the FM method are optimal according to the minimal Euclidean
distance criterion, but it creates paths which run too close to obstacles and
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Wave source 
D(i0,j0)=0

Cells i,j with D(i,j) > 0   Cells not evaluated yet   Cells to be solved 
in the next iteration

(a) Iterations of FM with one wave in 2D. (b) Time of arrival poten-
tial D(x) (third axis)

Figure 1: Fast Marching Method with one propagating wave.

Wave source, D(i0,j0)=0

Cells i,j with D(i,j) >  0   

Cells not evaluated yet   

Cells to be solved 
in the next iteration

(a) Iterations of FM with two propagating waves (in 2D). (b) Time of arrival potential
D(x) (third axis)

Figure 2: Fast Marching Method with two waves.

are not smooth. These facts turn FM into an unreliable path planner for most
robotic applications. However, the FM2 algorithm solves these problems by
obtaining a velocities map which modifies the wave expansion according to
the distance of the closest obstacle.

The FM2 algorithm can be summarized in the following steps:

1. Modelling. The sensory information is included directly in black and
white cells avoiding complex modelling or information fusion.

2. Object enlarging. The objects detected in the previous step are
enlarged by the radius of the mobile robot. This way the objects and
walls are dilated to ensure that the robot does not collide or accept
passages narrower than its size.
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3. FM 1st step. Using the map obtained after the enlarging, a wave
is propagated from all the points which represent obstacles and walls
(black, velocity value 0). This wave propagation is performed using the
FM method. The result of this step is a potential map, W (x), in which
the value for each pixel is proportional to the distance to the closest
obstacle.
This potential map is represented in a gray scale, in which black (veloc-
ity value 0) represents walls and obstacles. When the cells are further
from them, they become lighter (velocity tends to value 1), representing
the safeness of the cells. This map can be interpreted as a velocities
map or a refraction index map because of the similar effect in Geo-
metrical Optics, where light rays travel in curved trajectories in media
with changing refraction index. Due to this analogy, the laws that
govern the transmission of electromagnetic waves and light are used to
calculate the robot’s trajectories.

4. FM 2nd step. The Fast Marching Method is applied again on the
velocities map obtained in the previous step. A new potential D(x) ap-
pears, representing the propagation of an electromagnetic wave, where
the time of arrival is added as the third axis in 2D (or the fourth in
3D). The origin of the wave is the goal point and it propagates until
it reaches the current position of the robot. Then, gradient descent is
applied from the current position the robot. The trajectory obtained is
the geodesic in the potential D(x). Since there is only one wave in this
step, this potential D(x) will have only one local minimum, located at
the goal point.
If the robot, when following the path, is given a reference velocity
according to the velocities map, then the path is optimal in terms of
time according to the metric defined in the previous step. In referece
to the analogy with Geometric Optics, time optimality is justified by
the principle of Fermat: ’Light travels the path which takes least
time’.

The results from applying the steps of this algorithm are shown in Figure
4 for a real map obtained using a laser range scanner.

The FM2 method can be included in the sensor-based global planner
paradigm. It dose not have the typical problems of these methods [16]:
trap situations due to local minima, no passage between closely spaced ob-
stacles, and oscillations in presence of obstacles or narrow corridors. This
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Figure 3: Path planning with the standard FM method. From left to right -
Initial binary map obtained by a range scanner sensor. Dilated binary map.
Output of the FM method, time of arrival function D(x). Path obtained
after applying gradient descent on D(x).

Figure 4: Steps of the FM2 method. From left to right: velocities potential
applied over the dilated map of Figure 3. Time of arrival function D(x), it
is possible to appreciate how the wave expands in a different way than in
3. Finally, path obtained applying gradient descent over the D(x) potential:
smooth and safe.
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method seeks trajectories with adequate properties (smoothness, continuous
curvature, etc.) and it is conceptually close to the navigation functions of
Rimon-Koditscheck [17], because the potential field has only one local min-
imum located at the goal point. Concretely, the key characteristics of the
FM2 method are:

• Absence of local minima. Expanding only one wave when computing
the second potential D(x) assures that there are no local minima. Since
the velocities of the first potential are always non negative (indepen-
dently on the type of environment, obstacles, etc) it is impossible to
have local minima. In the worst case a saddle point can occur, but this
is not problem in the gradient descent step.

• Fast response. The simple treatment of sensor information and the low
complexity order of the algorithm allows a good response in terms of
computation time.

• Smooth trajectories. As long as the velocities map does not have dis-
continuities, the trajectories provided will be smooth and do not need
to be refined.

• Reliable trajectories. The planner provides safe and reliable trajectories
avoiding the problem of coordination between local collision avoidance
and global planners.

• Completeness. As the method consists in the propagation of a wave, it
will always find a path from the initial position to the goal position, if
a solution exists.

3. Robot Formation Path Planning with Fast Marching Square

The final objective in robot formation path planning is to find the paths
and poses (positions and orientations) for each robot of the formation, taking
into account the characteristics of the environment, the others robots in the
formation, and the final objective. Therefore, the robot formation should be
able to move throughout the scenario adapting the shape of the formation
to their needs.

In this paper, the leader-followers scheme is used for robot formation path
planning. The pose reference for the follower robots are defined by geometric
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equations, placing the goal point of each follower as a function of the leader’s
pose. The leader can be a robot, another vehicle, a person or even a virtual
leader, which is a hand-defined point, usually by geometric relations.

The algorithm described next is an adaptation of the one proposed in [6]
to the FM2 path planner method. This change is motivated by the fact that
FM2 is an improvement of the VFM planning method. Hence, the robot
formation path planning is based on a state-of-the-art algorithm. There also
exist two other advantages to using FM2: it is easier to implement than
VFM and it provides a continuous velocities map, whilst the VFM provides
a velocities map with discrete gray level.

The FM2 method provides a two-level artificial potential which repels the
robot from the walls and obstacles. On the other hand, robot formation
motion control requires additional repulsive forces between robots. Working
only with the artificial repulsive potential given by the FM2, the robots of the
formation could crash into each other. Thus, integrating the potential given
by FM2 and the repulsive force between robots, each robot has at each mo-
ment one single potential attracting it into the objective but repelling it from
obstacles, walls and other robots. The main requirement when integrating
all the potentials is to do it in a way that does not create local minima.

3.1. Base Algorithm

The FM2 uses a two-step potential to compute the path: the first step
creates a potential which can interpreted be as a velocities potential, de-
noted as W (x); and the second step creates a funnel shaped potential, which
represents the distance to the goal in the metrics W (x) and is denoted as
D(x).

The robot formation path planning algorithm using FM2 is the following:

• The environment map W0 is read as a binary map, where 0 (black)
means obstacles or walls and 1 (white) means free space. This map is
common for all the robots in the formation (both leaders and followers).

• The first potential W is calculated applying the FM method to the
binary map W0, according to the FM 1st step of the FM2 method
(section 2.2).

• The second potential D is calculated applying the FM method on the
potential W.
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• An initial path for the leader is calculated applying gradient descent
on the potential D, according to the FM2 method.

• So far the algorithm described is the application of FM2 to the leader
of the formation. Then a loop begins in which each cycle represents a
step of the robots’ movement. This loop consists of:

1. For each cycle t, each robot i (both leader and followers) in-
cludes in its binary map Wt

0i the other robots in the positions
(xj, yj)∀j 6= i (in 2D case) as black points, representing obstacles.

2. For each cycle t, each robot i generates a new first potential Wt
i

from Wt
0i.

3. From the leader’s pose and the desired formation geometry, the
partial goal (xgk, ygk) is calculated for each follower k (where k
represents all the followers of the formation). The shape of the
formation is deformed proportionally to the grey level of the par-
tial goal’s position. Thus, the formation is adapted to the environ-
ment moving farther from obstacles and walls and also avoiding
collisions with other robots (which are treated as obstacles). This
way, the repulsive force between robots and walls and also the
repulsive force between robots are implemented. The initial ge-
ometry of the formation and how it is affected by the environment
is shown in Figure 5.

4. The potentials Dt
i are calculated applying the FM method to the

metrics matrices Wt
i. For the leader the goal point is the end

point of the path. The goals of the followers are the partial goals
computed on the previous step. The low computational cost of
FM2 allows us to do this without compromising the refresh rate.

5. The path is calculated for each robot i. This path is the one with
the minimum distance with the metrics Wt

i and it is obtained
applying gradient descent on the potential Dt

i.
6. All the robots move forward following their paths until a new

iteration is completed.

The aforementioned algorithm is summarized in the flowchart of Figure 6.
It is a base which assures the correct navigation of a robot formation through
different environments, avoiding obstacles and adapting to narrow passages.
In [6] many additional techniques are proposed to improve the time or be-
haviour performance of the algorithm. These techniques such as maximum
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Figure 5: Top left - Main components of the robot formation algorithm.
Top right - Reference geometric definition of a simple, triangle-shaped robot
formation. Bottom left - Behaviour of the partial goals depending on the
leader’s pose. Bottom right - Behaviour of the partial goals depending on
the obstacles of the environment.

energy configuration, using a tube around the path to decrease the compu-
tational cost, or adding springs can be applied to this algorithm with very
similar results. In addition, this algorithm can be applied to any kind of
robot formation, with real or virtual leaders. Figure 7 shows the steps of the
algorithm on a triangle-shaped robot formation. This shape has been chosen
because it is easier to analyse the behaviour of the followers. We will employ
this type of robot formation throughout the paper, but some experiments
will also be shown, featuring more robots in the formation and with different
shapes. In the Figure 8 the complete sequence of movement is shown.

3.2. Including uncertainty conditions

In the previous work the obstacles were included in the initial binary
map. Here the obstacles and the other robots of the formation are included
in the velocities map, allowing to easily include a degree of uncertainty in
the position of the obstacles and robots. This modification also improves
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Figure 6: Flowchart of the basic robot formation planning algorithm using
FM2.
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Figure 7: a) Snapshot of the formation moving. The leader follows the
blue path. The green triangle (leader-partial goals) is the desired formation
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Figure 8: Sequence of movement of a robot formation with the basic path
planning algorithm, simulated in a map of our laboratory obtained with
SLAM techniques.
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enormously the computational cost of the algorithm, since the velocities map
is not calculated once for every robot and every iteration.

In the implementation phase, there are two approaches that can be used.
The first one is decentralized control. This is based on using completely
autonomous robots, which detect the environment and obstacles with their
sensors, compute their localization and communicate their positions to all
the other members of the formation. This requires a complex communica-
tion protocol and the uncertainties are high. On the other hand is centralized
control, where one main computer receives all the information through sen-
sors and communicates the decisions directly to the robots. In this case, the
sensors could be a camera above the robots or a motion capture system. The
uncertainties of this approach are usually lower and its implementation is
easier. Although both approaches are suitable for our proposed algorithm,
we think it is easier to demonstrate by means of the second approach. An
example of a low-cost, easy implementation is shown in Figure 9. Of course,
these strategies are not error-free and have an uncertainty associated due to
sensor noise and measurement errors.

In the proposed method, each robot i of the formation has its own first
potential Wt

i depending on time. This potential is defined by the global
first potential W (defined by the map) in which an uncertainty function is
included for each robot of the formation.

Let us suppose that robot i of the formation is in the position (xi, yi). This
position has an error, since it has been calculated using sensor information.
With the dimensions of the robots known, namely li × wi, the robot j takes
into account the position of robot i and its uncertainty as follows:

• A map is created in which all is a gray space with uniform value 0 ≤
α ≤ 1, where α means the uncertainty level (1 means totally uncertain
and 0 means no uncertainty).

• In the middle of this map a zone with value 0 is included. The size
of this black zone is equal to the dimensions li × wi, representing the
robot on the measured position.

• The FM algorithm is applied to this map using the position of robot i
as the origin. Thus, a gray scale map is generated where the highest
values depends on the size of the map and the uncertainty. The min-
imum between the gray scale map and 1 is calculated in order to set
the maximum value (white). Then, this map can be interpreted as a
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Figure 9: Example of a system which is able to capture the position and
orientation of the robots by using a camera and colour labels on the robots.

16



uncertainty function Wri where white (1) means that it is quite certain
that robot i is not in those points, and black (0) means that robot i is
certain to be in those points. The uncertainty function should not de-
pend on the time, since this uncertainty appears because of the sensor
noise and it is supposed to maintain itself in the same range of values.

• Calculate the minimum between the first potential Wt
j of robot j and

the uncertainty function Wri. Thus, Wt
j is updated with the position

of robot i with the uncertainty included.

Wt
j = min(Wt

j,Wri)

In the initialization, the first potential for the robot is equal to the
global first potential, Wt

j = W.

• For the robot j, this process is repeated for all the other robots i
in the formation. At the end, the first potential Wt

j will include an
uncertainty function for every other robot in the formation.

This algorithm can be integrated into the one described in section 3.1 by
including it in place of steps 1 and 2 of the loop.

With this method, summarized in Figure 10, one robot in the formation
(leader or follower) is able to calculate the path to its objective taking into
account the global map and the other robots’ position with its uncertainty
included. This way, the robot will navigate far from places that are obstacle-
free but the velocity is slow, and it will also avoid places were the velocity
could be high but it is not possible to assure safety. The steps of the algorithm
and its details are shown in Figure 11. Full sequences of movements are shown
in Figures 12, 13, 14, testing different robot formation shapes.

For n robots, the FM method must be applied n times (one per robot),
which increases the computational cost. To reduce this cost, the uncertainty
function is computed on a smaller map and is later added to a bigger map.
In our simulations, the map on which the uncertainty function is applied has
a size of 10 times the dimensions of the robots. Moreover, if all the robots
of the formation are of the same size, it is only necessary to compute the
uncertainty function once and later include it in all the positions needed,
avoiding unnecessary computational cost.

Comparing Figures 8 and 12, it is possible to see that the motion of the
formation is not highly modified. However, the inclusion of the other robots

17



Wt
i

Compute uncertainty 
function for robot j, 

Wrj

Insert  uncertainty 
function in location 

of robot j

Wt
i= min(Wt

i,Wrj)

Wt
i

i=j

Real Map, W0

Obtain first 
potential, W

Obtain second 
potential, D

Find leader’s 
path

Leader in goal 
point?

ENDYes

Wt
1 Wt

2 Wt
i

Partial   
goal 1

Dt
1

Path 1

Partial   
goal 2

Dt
2

Path 2

Partial   
goal i

Dt
i

Path i

Move 
robots n 

steps

Leader Followers
No

Wt
0,1 Wt

0,2 Wt
0,i

Wt
Leader

Goal 
Point

Dt
Leader

Path 
Leader

Wt
Leader

FM
2

 M
et

h
o

d

Repeat ∀ i≠j 

Figure 10: Flowchart of how the velocities map is modified for every robot
in the formation.

18



0

1

length

α = 0.2
α = 0.6

α = 0.6
0

0.6

0

1

rescale

0
0.2α = 0.2

0

1

rescale

2D

2D

a)

b) c)

d)  

 

0

0.5

1

1.5

2

2.5

3

e)

0 10 20 30 40 50 60 70

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

R
o

b
o

t 
v
e

lo
c
it
y
 (

%
 o

f 
th

e
 m

a
x
im

u
m

)

 

 

Leader

Follower 1

Follower 2

f)
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Figure 12: Sequence of movement of a robot formation with the proposed
path planning algorithm.
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Figure 13: Sequence with a different formation. This time, 3 robots travels
in a line.
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Figure 14: Sequence of movements of a robot formation composed of 4 robots.
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Leader position First follower
position

Figure 15: Comparison of the velocities map created for the second follower
with the basic algorithm (top) and using uncertainty functions (bottom).

as uncertainty functions in the velocities map has many advantages: in the
basic algorithm there were places in the velocities map which were far from
the robots but still influenced their movement. With the approach shown
herein robots are only taken into account within their uncertainty area, see
Figure 15. Therefore, the robots behave normally until they are in places
were other robots could be. The proposed approach allows dealing with
uncertainty in a very intuitive way, avoiding complex probabilistic modelling.
Furthermore, in the basic algorithm the velocities map had to be calculated
in every loop cycle. This supposes an average computation time of 1.5± 0.1
seconds in a 625× 293 pixel map. With the new approach the computation
time of each iteration is 0.82± 0.03 seconds for the same map.
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3.3. Velocity saturation

In environments with large, open areas the FM2 can provide good trajec-
tories but they can be improved since in most situations it is not necessary
to move through the safest path but through one that is safe enough. For
instance, in an open room it may not be necessary to go through the mid-
dle of the room because it is enough to keep a minimum distance from the
walls. To solve this a saturated variation of the velocities map W (x) has
been implemented. This results in a maximum velocity in open areas which
decreases when the robot is close enough to the walls or obstacles. This has
already been proposed in [12] for single robot motion, improving the trajec-
tories, which are closer to the optimal path in distance and making it more
human-like. Here, velocity saturation is applied to a robot formation, which
allows the geometry to have less deformation since the velocity is constant
in most points.

Figure 16 shows the underlying characteristics of this variation. A full
sequence of movement is included in Figure 17. It should be noted that this
modification will require faster and more agile robots, since the shape is not
deformed until any robot of the formation is close enough to an obstacle.
Thus, while the advantage of this variation is that the formation maintains
its predefined shape for a longer period of time. However, the drawback
is that it usually generates sharper curves. This version of the proposed
algorithm does not include any modification in the computation time for
every iteration.

3.4. Mobile obstacles

The 50% reduction in computation time encourages a deeper study in
dynamic environments. In most robotic applications, there will be two types
of obstacles: static, such as walls; and dynamic, like people walking around,
doors, etc. In a real application, a robot formation must be able to change
its path according to the dynamic obstacles in the scenario.

Since the leader of the formation is recalculating its complete path in each
iteration, the path will always be collision-free for the leader. The followers
compute their path to the partial goals, so mobile obstacles do not represent
a problem for the followers until they are close to them. The obstacles can
be detected in many different ways: cameras, robot sensors, motion capture
systems, etc. As for the robots, when an obstacle is detected, its position
(and also velocity) will be measured with an associated error due to sensors
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Figure 17: Sequence of movements of a robot formation using velocities map
saturation.
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noise. It is possible to deal with this uncertainty in the same way as done in
section 3.2:

• The leader obtains a safe, collision-free path, avoiding obstacles which
could become a problem in the following steps.

• The position of the obstacle and its size have some degree of uncer-
tainty. Then, the algorithm in section 3.2 is used in order to take that
uncertainty into account: an uncertainty function is calculated for each
mobile obstacle, depending on its size and velocity. All the generated
functions are included in the velocities map of the robots.

With this method a low computational cost is achieved when dealing with
dynamic obstacles, since the underlying algorithm is the same proposed in
section 3.2. The only modification is that the obstacles detected are included
in the first potential of all the formation robots. The inclusion of mobile ob-
stacles is detailed in Figure 18. A complete sequence of movement in a real
laboratory, obtained through a 360◦field-of-view range scanner, is shown in
Figure 19, where velocity saturation was also applied. Predictive algorithms
such as [18, 19], can be used to predict those movements and set the par-
tial objectives accordingly. Other methods to include uncertainty in mobile
obstacles, based on multidimensional Gaussian functions have already been
proposed [20]. The main advantage of the proposed method is that using
FM2 has a similar result and it is easier to implement. Also, the way Gaus-
sian functions can be merged with the FM2 requires a deep study while the
advantages are not remarkable in comparison with the proposed method.

4. Conclusions and Future Work

All the graphs included, except Figure 9, correspond to Matlab implemen-
tations of the proposed algorithm, applied to different cases. It is important
to note that the absolute times given for comparison are not representative,
since the algorithms implemented in real robots would run much faster. How-
ever, the 50% time reduction is very remarkable because this would apply also
to a real implementation. In the simulations, both the initial and the final
points of the trajectory are given, and the paths are calculated with the FM2

algorithm (both the leader’s and followers’ paths). To calculate the partial
goals of the followers, a shape is previously set (e. g. a triangle, see Figure 5)
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Figure 19: Navigation sequence of a formation in a real environment. The
trajectories of the robots (red) and obstacles (pink) are included (the sharp
trajectories of the followers are due to simulation discretization).
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defining the distances from the followers to the leader and modifying those
distances as a function of the gray level of the current position.

The sequences shown in Figures 8, 12, 13, 14, 17 and 19 prove that the
algorithm behaves well even in complex, non-regular, cluttered environments.
It is also shown that many different formation shapes can be implemented,
depending on the requirements of the specific application. These simulations
were carried out in real scenarios acquired through sensors to show that the
algorithm is robust to the environment modelling noise and irregularities.

All these tests show that the proposed method, in combination with the
FM2 path planner, is robust enough to manage autonomous movements
through an indoor environment, avoiding static and mobile obstacles suc-
cessfully.

Moreover, the modifications to the algorithm to improve the behaviour
of the formation or decrease its computational cost proposed in our previous
work [6] can also be applied in the method described here.

Results show that the propsed algorithm is able to manage uncertainties
successfully with lower complexity than previous approeaches. In addition,
this approach allows us to include any number of robots in the formations,
by only setting the desired position with respect to the leader or the other
robots. Therefore, this paper represents a novel approach to solve robot
formation motion planning which is robust enough to work under uncertainty
conditions.

Future work in robot formation using FM2 is related to improving the
behaviour of the global formation during its movement, making it more au-
tonomous when deciding how to move through the map in terms of flexibility.
One interesting way to do this is to create a difficulty map which expresses,
at each point of the initial map, the complexity that point represents to the
formation (how much the formation has to change it shape, for example).

Future work is also related to expanding the proposed algorithm to out-
door environments, where all the robots of the formation will not be on the
same plane (as occurs in 2D); and also to study how to create formations in
3D cases, for example, in unmanned air vehicles (UAVs) flight control.

More complex fields can be studied, such as cooperative SLAM with for-
mations, where the uncertainty is also present when sensing the environment.
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