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Abstract. Sampling-based path planning algorithms are well-known
because they are able to find a path in a very short period of time,
even in high-dimensional spaces. However, they are non-smooth, ran-
dom paths far away from the optimum. In this paper we introduce a
novel improving technique based on the Fast Marching Method which
improves in a deterministic, non-iterative way the initial path provided
by a sampling-based methods. Simulation results show that the compu-
tation time of the proposed method is low and that path length and
smoothness are improved.
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1 INTRODUCTION

Sampling-based path planning algorithms are nowadays one of the most powerful
tools to solve planning problems, specially in high-dimensional spaces. Since the
first versions of these algorithms appeared [1, 2], they have been applied to many
different problems and many different versions have appeared, improving more
and more their performance [3].

However, the drawbacks of these methods are well-known. They are based on
random (or pseudo-random) space sampling. This leads to non-optimal, stochas-
tic paths which are far away from the optimal one (in terms of distance, obstacle
clearance, etc). Many optimization techniques have been already proposed [4–6].
These optimization techniques, based on iterative processes, achieve the optimal
path in terms of distance. Nevertheless, these optimal paths are still non-smooth
and the obstacle clearance is minimum, which can be dangerous in real applica-
tions.

In this paper we introduce a method for improve the sampling-based paths by
increasing the smoothness and decreasing the path length. Also, a good enough
obstacles clearance is ensured. The proposed algorithm tries to imitate the Fast
Marching Square (FM2) algorithm [7] but applied over a triangular mesh. Model-
ing a continuous space as a triangular mesh and computing the paths as geodesics
is already proposed in [8]. However, the requirements for the triangular mesh and
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the method used for computing the distances map makes this method computa-
tionally slow. In our case, we restrict the triangular mesh to a region of interest
around an initial sampling-based path and compute the geodesic of the mesh
with the Fast Marching Method (FMM) [9] speeding up the computation time
and obtaining high-quality paths.

This paper is organised as follows. Next section explains the path initializa-
tion algorithm. Section 3 outlines the FMM applied to irregular triangle meshes.
Following, section 4 details the proposed algorithm. The results are given in
section 5 and finally the conclusions of the work are extracted in section 6.

2 SAMPLING-BASED PATH INITIALIZATION

The reason we choose to use a sampling-based algorithm as a path initialization
is because these algorithms are known to be the fastest to provide a reliable path
between two points when no previous experience is taken into account.

In this case, we will use the Rapidly-exploring Random Trees (RRT) algo-
rithm which is one of the basic algorithms within the sampling-based group [2].
However, since most of the sampling-based methods share the same proper-
ties (fast response, non-smoothness, low obstacles clearance...) [3] any kind of
sampling-based algorithm is suitable for the purpose of this paper.

The RRT algorithm is detailed in algorithm 1. Formalizing, the RRT creates
a tree T , which is a set of N vertices V and N−1 edges connecting those vertices
E, T (V,E). Following, the main components of the algorithm are described:

– Sample(i) Provides uniformily random samples from the obstacles-free space.
– Nearest(V, xnew) Returns the closest vertex v ∈ V to the point given in the

argument xnew.
– Steer(xnew, xnearest) Creates a path σ between the two points given. Usually,

it is a straight line between those two points.
– CollisionFree(σ) Returns true if the path given σ is collision free.

The finishing condition in this case is to sample N times. However, this can
cause that the algorithm ends and it does not find any possible path. Then, the
finishing condition can be easily changed for any other, e.g. one of the vertices
of the tree is close enough to the goal point. Figure 1 shows a tree expanding
using as ending condition the number of vertices to expand N . Figure 2 plots
the paths obtained with RRT when the ending condition is to reach a vertex
close to the goal point.

3 FAST MARCHING METHOD

The FMM are a set of algorithms for computing consistent distance maps. The
first approach was based on regular orthogonal grids [10, 11]. Later, these algo-
rithms were extended to general triangular meshes [12]. Since triangular meshes
are more flexible when describin shapes, we will focus on this version of the
FMM.
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Algorithm 1 The RRT Algorithm

Input: Initial point x0.
Output: Tree T .
1: V ← {x0}; E ← ∅; T ← (V,E);
2: for i = 1 to N do
3: xnew ← Sample(i);
4: xnearest ← Nearest(V, xnew);
5: σ ← Steer(xnew, xnearest);
6: if CollisionFree(σ) then
7: V.add(xnew);
8: E.add(xnew, xnearest);
9: end if

10: end for
11: return T = (V,E).

Fig. 1: Examples of a tree created with the RRT algorithm. From left to right: N =
100, 300, 500.

Vertices Edges Path

Fig. 2: Paths obtained when planning with the RRT algorithm.
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In this section we outline the FMM applied in the following sections of this
paper. A detailed analysis of the FMM can be found in [9], whose notation we
will use. Let X be the surface defined by a triangle mesh and x a coordinate
parametrization of X, x : U → X. FMM is a procedure to build a distance map
d(x) = dX(x0, x) by numerically solving the Eikonal equation:

||∇Xd(x)||2 = 1 (1)

where ∇X represents the intrinsic gradient with the boundary condition d(x0) =
0.

Intuitively, FMM simulates a wavefront propagation computing the time of
arrival d(x) for every point of the space when the wave propagates with constant,
non-negative velocity. Let us suppose that a wave starts propagating at x0 with
d(x0) = 0. This point of the mesh is already frozen (its value will never change).
By open points we denote those points of the mesh which have not been visited
yet by the wave, therefore d(x) = ∞. Finally, points in the narrow band are
those belonging to the wave front, acting as an interface between frozen and
open points. Algorithm 2 describes the FMM algorithm to compute the distance
map d(x).

Algorithm 2 Fast Marching Method

Input: non-obtuse triangular mesh (X,T ), source point x0.
Output: distance map d : X → R from the source point.

Initialization.
1: for all x ∈ X do
2: d(x)←∞;
3: end for
4: d(x0)← 0;
5: frozen← x0;
6: narrow ← N (x0); . Neighbours of x0.
7: open← X\(frozen ∪ narrow);

Iteration.
8: while frozen 6= X do
9: x1 ← arg min

x∈narrow
d(x);

10: for all t(x1, x2, x3) ∈ {(x1, x2, x3) ∈ T : x2 ∈ frozen ∪ narrow, x3 ∈
narrow ∪ open} do

11: narrow ← narrow ∪ {x3};
12: Update(x1, x2, x3);
13: end for
14: narrow ← narrow\{x1}; . Updating sets.
15: frozen← frozen ∪ {x1};
16: end while

The main difference between FMM and Dijsktra’s algorithms [13] is the Up-
date step in the line 12 of algorithm 2. This update step, detailed in algorithm 3
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Fig. 3: Front wave propagation in a triangular mesh. The source point is at the bottom
of the mesh.

requires two vertices of the same triangle in order to compute the time of arrival
of the third vertex. This allows the geodesics to go for any place within the trian-
gle mesh following the gradient of the distance map d(x), which is approximated
by the wave propagation direction n.

Algorithm 3 FMM Update Step

Input: non-obtuse triangle with vertices x1, x2, x3 and the corresponding arrival times
d1, d2, d3.

Output: Updated d3.
1: V = (x1 − x3, x2 − x3);
2: d = (d1, d2)T ;
3: Q = (V TV )−1;

4: p =
1T2×1Qd+

√
(1T2×1Qd)2−1T2×1Q12×1·(dTQd−1)

1T2×1Q12×1
;

5: n = V −T (d− p · 12×1);
6: if QV Tn < 0 then . Monotonicity condition.
7: d3 ← min{d3, p};
8: else
9: d3 ← min{d3, d1 + ||x1||, d2 + ||x2||};

10: end if

The aforementioned algorithm works for non-obtuse triangular meshes. In
case there is any non-obstuse triangle in the mesh, it can be solved by connecting
the vertex x3 to another point on the mesh [12]. Figure 3 depicts the front wave
propagation following the FMM. Also, Figure 4 includes the geodesic computed
with FMM. In fact, it is not the optimal geodesic, since FMM carries out some
approximations when computing d(x). If necessary, it is possible to improve the
accuracy of the geodesic by: 1) increasing the number of triangles of the mesh
2) applying other, more advanced FMM methods [14] ot increasing the order of
the finite differences Eikonal solver [15]. In any case, the method would become
more complex and slower.
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Goal point

Initial point
FMM geodesic

Fig. 4: Geodesic computed with FMM on a triangle mesh. Plotted together with the
distances map d(x).

4 IMPROVING PATH QUALITY WITH FAST
MARCHING

In this section, we describe a novel technique for improving paths. We want to
note that it is not an optimization technique since our method is not looking
for an optimal solution. However, we propose a fast technique which improves
the quality of a given path. In terms of path length, obstacle clearance and
smoothness the final path will be closer to the optimal one. Although we cannot
guarantee that the final solution is optimal, we provide a deterministic, non-
iterative algorithm which will improve the initial path.

The proposed method is based on creating a tube around the initial path.
Next, a triangular mesh is created within the tube and the FMM method is
applied. However, in this case the velocity of the propagating wave will not be
constant, but directly proportional to the distance to the closest obstacle. This
is very close to the Fast Marching Square (FM2) algorithm deeply studied in
the recent years [7, 16]. Computing geodesics in the distance map generated will
provide collision-free, near-optimal paths in terms of path length (since FMM ap-
proximates the geodesics). The proposed algorithm, summarized in algorithm 4,
is detailed in the following lines.
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Algorithm 4 Proposed Path Improving Algorithm

Input: Initial path p(Vp, Ep).
Output: Final, improved path q.
1: for all v ∈ VP do
2: (VROI,v, VM,v)← ComputeVertices(v);
3: VROI ← UpdateROI(VROI , VROI,v);
4: VM ← (VM ∪ VM,v);
5: end for
6: X ← (Vp ∪ VROI ∪ VM );
7: (X,T )← CDT(X,VROI);
8: d(x)← FMM(VP,0, VP,g);
9: q ← ComputeGeodesic(d(x), VP,g);

4.1 Mesh generation

Once the RRT (or any other sampling-based algorithm) has been applied, an
initial path p is obtained, expressed as a subset of the tree T : p(Vp, Ep) ⊂
T (V,E). A region of interest (ROI) has to be defined, so the mesh is confined
around the initial path. This region of interest is created by placing a regular
polygon with the center at every vertex Vp. It is important that the polygons
cover the area needed to ensure connectivity of the polygons of adjacent vertices.
This requirement is easy to overcome: when planning with RRT (or similar), the
main parameter is the length of the step given in the Steer step. This parameter
is the maximum possible distance between two vertices of the tree connected by
an edge. Therefore, connectivity of the polygons will be ensured as long as the
shortest line between the polygon contour and its center is larger than half of
the RRT step parameter, as shown in figure 5.

minimum distance
contour - centre

RRT vertex  RRT step  

ROI polygons

(a) No connectivity. (b) Connectivity ensured.

Fig. 5: ROI connectivity according algorithms parameters.

Once all the polygons have been created, the external contour, expressed as
a set of vertices VROI , is computed by computing the union of all the polygons,
as shown in figure 5 b).
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With the ROI computed, the next step is to create a triangular mesh inside
this ROI. Before creating the mesh, it is mandatory to define the set of vertices
VM that will be used when triangulating. Although a uniform random sampling
could be a good option for this case, it could be complex and time consuming
to ensure that all the points created randomly are in the ROI. For this reason,
we have decided to create a structured sampling pattern.

When calculating the vertices of the polygons for the ROI, also the middle
points between the center and vertices are computed and included in the set VM .
Therefore, the vertices to be used in the triangulation will be: X = (Vp∪VROI ∪
VM ) (figure 6). Note that we are not restricting these vertices to be in the free
space. Since the obstacles will be taken into account in the next step, it is not
necessary to spend time checking the vertices generated.

ROI vertices, Vroi
Middle vertices, Vm
RRT vertices, Vp

Fig. 6: Set of all the vertices X to be used in the triangulation.

Finally, the Constrained Delaunay Triangulation algorithm (CDT) [17] is
applied to the set of vertices X and the ROI contour defined by VROI , obtaining
a triangular mesh (X,T ). An example is given in figure 7. Any other triangulation
algorithm could be chosen here. However, CDT maximizes the minimum angles
of the triangles, so it tries to avoid skinny triangles, which is a desirable property
for a FMM input mesh. Also, CDT is easily extensible to more dimensions.

4.2 Application of FMM

The next step is to compute the distances map d(x) for the generated mesh
(X,T ). The FMM is applied from the goal point of the path Vp,g until the
front wave reaches the initial point of the path Vp,0. However, the propagation
velocity used is not constant. The geodesics, when computing using FMM tend
to go closer to the places where the wave can expand faster, following the least
action principle [9]. Therefore, d(x) is translated into a times-of-arrival map.

When updating vertex x3 from (x1, x2), the distance to the initial point d3
is updated as mentioned in section 3. However, when the propagation velocity
is not uniform, after calculating d3 is is necessary to update it, to compute the
time of arrival approximated as:
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Fig. 7: Example of the CDT algorithm applied to a set of vertices X.

d3 = min(d1 + v3 · ||x3 − x1||, d2 + v3 · ||x2 − x1||) (2)

Where v3 is the wave propagation velocity towards x3. In figure 8 the velocities
for every point of the mesh are shown. The closer a vertex is to an obstacle, the
slower the wave propagates towards that vertex. The resulting wave propagation
with this velocities map is shown in figure 9. Comparing this figure with figure 3
it is possible to appreciate the influence of the obstacles when computing the
time of arrival value for each vertex.

Finally, in order to obtain the final, improved path gradient descent is applied
from the point Vp,0. Since only one wave was expanded from the goal point Vp,g,
gradient descent will always converge to this point since it is the only minimum
in d(x) . The final path in comparison with the initial RRT path is shown in
figure 10 (octagons were used in the mesh generation).

5 RESULTS

The results will be expressed as a set of metrics and their variation for the initial
RRT path and the improved path after applying FMM. The experimental setup
comprises 3 different, random environments, 5 random path queries for every
enviroment, and every query computed 10 times. Regarding the algorithms, the
workspace size was 100×100 (the units are not important, since we are always
using the same scale). 100 random obstacles were generated, with a maximum
radius of 2.5. The RRT maximum step size was set to 2. In FMM, octogons were
used to create the mesh with a radius of 5.

The metrics computed are the following:
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Obstacle

Obstacles

Fig. 8: Velocities map used when propagating the wave. The darker the slower the
wave propagates.

Fig. 9: Front wave propagation in a triangular mesh with varying velocity. The source
point is at the bottom of the mesh.

Goal point

Initial point

FM geodesic

RRT path

Obstacles

Fig. 10: Comparison of the initial RRT path the geodesic computed with the proposed
method.
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– RRT Computation time - The time tRRT (in s) the RRT algorithm took
to compute the initial path.

– FM Computation time - The time TFMM (in s) the proposed algorithm
took to improve the path.

– Deviation in path smoothness - The smoothness κ′ can be measured in
many different ways. We will use the smoothness metric given in [18], which
represents the standard deviation of the angles along the path. Let αi be the
angle between two consecutive segments of a path divided into m segments.

Therefore, κ′ =
√

1
m−1

∑m
i=2 α

2
i . The angle taken into account is illustrated

in Figure 11. Since we are comparing the deviation between the FMM and
RRT paths, we compute the smoothness ratio κ′ = κ′FMM/κ

′
RRT .

αi
mi

mi-1

pi

pi-1

pi+1

Fig. 11: The angle between two consecutive segments of a path.

– Deviation in path length - The path length l is approximated by dividing
the path into n points P = 〈p1, p2, ..., pn〉 and computing l =

∑n−1
i=1 dE(pi, pi+1),

where dE stands for the Euclidean distance. Therefore, we compute the de-
viation as the ration l = lFMM/lRRT .

– Deviation in Minimum Obstacles clearance - The metric dn con-
tains the deviation of the minimum distance of the points along the path
to the closest obstacles of the environment. It is computed as the ratio
dn = dn,FMM/dn,RRT .

Figure 12 summarises the results obtained for the metrics aforementioned.
The graph shows the distribution of results for the 15 experiments done (3
environemts, 5 queries per environment) using the means obtained per every
query (computed 10 times). Figure 12 a) shows the computation times of both
initialisation path obtained with RRT and the proposed, FMM-based algorithm.
Although the absolute values are not meaningful (because of implementation
issues), the conclusion from this graph is that the novel method computation
time does not vary that much as RRT. The longer the initial RRT path is the
longer the optimzation takes, but in a restricted period of time.

From figure 12 b) it is possible to evaluate the proposed algorithm. The
smoothness ratio is close to 1.2, which means that the average smoothness im-
provement is around 20%. Also, note that for all the experiments, this ratio
is higher than 1. Analogously, the length ratio is always lower than 1 (average
around 0.85) which supposes an average improvement of the path length of 15%.
Lastly, the clearance ratio requires a deeper analysis. The RRT algorithm does
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not take into account the distance to obstacles when planning. Therefore, the
minimum clearance is totally random (it could be, in fact, a safe trajectory).
Therefore, it is not a significant result.

However, it is possible to ensure that the FMM method provides a good
enough minimum clearance (where good enough depends on the application). In
our case, the wave propagation velocity was proportional to the distance to the
closest obstacle. If this proportion is made stronger (let us say, proportional to
the square of the distance to the closest obstacle) the geodesic will be longer in
terms of length but with a better minimum clearance.

RRT FMM
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Fig. 12: Results of the proposed FMM-based algorithm.

Finally, figure 13 includes the visualisation of the application of the algorithm.

6 CONCLUSIONS

Along this paper we have proposed and analysed a novel method for improving
initial paths computed with fast, non-optimal algorithms. The results show that
the computation time is acceptable, but there is a huge margin for improvement
since the implementation is not optimised.

The key properties of the proposed method are that it is deterministic and
non-iterative. For a given initial path, it will always produce the same output
and in one iteration (although the underlying FMM method is iterative, we are
applying it as a black box ). In some, very specific cases it is possible to have
different outputs because of the CDT, which is unique for most of the meshes.

As this work is still under development, there are many ways of improving the
results. Testing different, more efficent velocities map can improve the quality of
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Goal point Initial point FM geodesic Obstacles RRT path

Fig. 13: Different executions of the algorithm and their results.

the final path. Also, the addition of other triangulation methods (or a different
sampling for the mesh vertices) could improve the computation time.

Apart of the aforementioned, future work will focus on see how the param-
eters of both RRT and FMM affect the improvement and to try to apply it to
more generic scenarios, where obstacles are not represented by circles.

Finally, this paper has focused on a 2D implementation. However, all the
components of the algorithm are defined for n-dimensional space.
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