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Abstract. This paper presents a comparison of the different colour
spaces used in an environment modelling algorithm. This algorithm is
based on the fusion of depth and colour information of a low-cost RGB-
D camera to model an indoor environment. This modelling is based on
creating and updating Gaussian models of the colour of the walkable
floor. The analysis carried out tests the performance of three different
colour spaces, obtaining the best choice to get a correct floor segmenta-
tion and reconstruction. As the results show, the algorithm performance
highly depends on the colour space chosen. The method has been evalu-
ated in a set of frames representing different environments captured with
a RGB-D camera.
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1 INTRODUCTION

Nowadays a correct environment modelling is a very important technique to
develop good mobile robots. To achieve a reliable autonomous motion the robot
has to know which zones are walkable and which ones are occupied by obstacles.
These obstacles can be static, such as paper bins, boxes or furniture, or dynamic
like people walking, and the robot has to be able to separate these obstacles
from the rest of the environment to detect the walkable zones.

Traditionally researchers have used different sensors trying to generate a
tridimensional representation of the environment with different algorithms and
techniques. In these techniques, the main purpose consists on detecting the free
space immediately around the mobile robot rather than the specific wall-floor
boundary. Some examples can be found in [1], where 4 stereo cameras are used
to accomplish this task. An alternate approach was proposed in [2], using a
combination of colour and gradient histograms to distinguish free space from
obstacles.

Only a few of researchers have considered the floor segmentation a prob-
lem by itself. The techniques employed by these researchers want to utilise the
ground plane restriction in different forms like planar holographs to optical flow
vectors [3, 4].
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In 2005 the Department of Defense from USA organized a contest called
DARPA Grand Challenge, consisting in moving a car from one point to another
one without any human intervention. The Stanford University won this contest.
Among the different systems implemented in the car, they used a segmentation
of walkable floor algorithm which allowed their car to circulate at the highest
average velocity [5]. For this task they used two different sensors: laser range
finders and a standard RGB camera. Their solution combined the information
of the sensors to be able to increase the walkable floor segmentation capability.

Our algorithm is based on the same idea. However, we focus on indoor envi-
ronments and a low-cost RGB-D camera is used. This type of camera provides
a modern technology at low cost, so it is not necessary to have a very expen-
sive equipment to get a correct modelling. However, some researches about the
performance of a RGB-D camera in environment modelling has been done with
a successful results [6–8]. In this work, some common problems of image pro-
cessing in indoor environments such as: brightness and colour changes caused by
artificial lightning, similarity among different areas in the environment and so
on, are addressed, and a measure of its performance its presented.

The next sections of the paper are organised as follows. In section 2 the
description of the algorithm is done. Section 3 contains the experimental re-
sults and their analysis. Finally, in section 4 conclusions and future work are
addressed.

2 SEGMENTATION OF WALKABLE FLOORS

In this algorithm a low-cost RGB-D camera has been used. These cameras consist
of an standard RGB camera and a set of depth sensors able to measure distances.
These sensors are capable of detecting the environment geometry in a range of
about 7 meters, but this range may not be enough depending on the application
and the velocity of the robot. For example, in figure 1 a capture of an RGB-D
camera located in the middle of a corridor is shown. As it can be seen, the range
measured by the RGB-D camera depth sensors is lower than the RGB image
range. One of the main goals of this algorithm is to overcome this limitation
merging the information provided by both sensors. The algorithm used for the
fusion of this information is based on the research presented in [5].

The employed algorithm is based on learning the colour parameters of the
floor segmented with the depth information. The estimation of the walkable
floor out of range of the depth sensors is based on the assumption that the floor
has the same colour properties than the previously segmented floor. Using this
supposition the algorithm is able to estimate the walkable zones located outside
of range of the depth sensors.

The algorithm starts working with the point cloud obtained by the RGB-D
camera depth sensors. With this information a tridimensional representation of
the environment can be obtained. First, these data is processed to be able to
detect and segment the floor. Later, a transformation from points in the 3D
space to pixels in the RGB image is needed to get colour parameters of the floor.



III

(a) Original point cloud. (b) Original point cloud over RGB image.

Fig. 1: Example of image captured with RGB-D camera.

To reduce the high quantity of information, a clustering technique is used to
group it and the resulting groups are defined by a simple statistical function to
reduce the time consumption of the next processes. Finally, a statistical measure
of the distance between each pixel and the functions obtained before is used to
classify the colour pixels. When the colour of a pixel is considered to be near the
function that defines the colour parameters of the floor, this pixel is marked as
part of the floor. In the opposite case, the pixel is discriminated and considered
as an obstacle. All these steps are detailed in the following points.

2.1 Filtering

The algorithm begins with a filtering process. The filtering consists on reducing
the amount of data obtained as much as possible while maintaining the desired
features of the input. With this process the algorithm improves its speed and
avoids some future problems due to the excess of information. The filter used is
a voxel grid filter.

The voxel grid filter generates a grid of cubes which have an identical size.
This filter is applied to all the data of the cloud. All the points which belong to
the same voxel in the grid are replaced by their centroid. The output data keeps
the original geometrical information of the environment but has fewer points
and a more uniform density.

The data reduction obtained depends on the cube size, so the output grid
obtained is bigger when the cube is smaller. Finding an appropriate voxel grid
size with the objective to achieve an equilibrium between speed and filter quality
is a critical, task dependent problem. An aggressive filtering can erase relevant
information but a low filtering makes the algorithm to be excessively slow pro-
ducing errors in the following steps. The decision on the size of the cube has
been made empirically and the result shown in figure 2.
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(a) Original point cloud with 208974 points.(b) Filtered cloud with cube size 3 cm
with 36242 points.

Fig. 2: Input cloud filtering.

2.2 Segmentation of the point cloud

The second step of the algorithm consists on the segmentation of the point cloud
into the different main planes that belong to the cloud. To compute these planes
the RANSAC [9], abbreviation of RANdom SAmple Consensus, algorithm is
used. This method adjusts, in an iterative way, the parameters of the plane that
contain the highest quantity of points. To minimise possible errors, RANSAC
also evaluates the distance between different points, discriminating the points
that overcome a limit.

Mathematically a plane can be described as:

ax+ by + cz + d = 0 (1)

When the coefficients of all the planes are obtained, they are analysed to
determine their position in the 3D environment. For this purpose, the camera
is assumed to be placed so that the z axis of the depth sensor is parallel to the
floor. Using the camera as a reference, a plane is considered to be horizontal if
a, c ≈ 0 and b ≈ ±1 since y is constant for every (x, z), and the height of the
plane is y ≈ −d/b. Therefore, if y < 0 the plane is the labelled as floor and
as ceiling otherwise. The results of the segmentation of the planes are shown in
figure 3 and table 1.

2.3 Pixels which pertain to the floor

Once the planes have been analysed and the floor identified, the colour infor-
mation of the floor is extracted to be analysed. This is done using the pin-hole
model described on equation 2.uv

1

 =

fx 0 Cx

0 fy Cy

0 0 1

Xi/Zi

Yi/Zi

1

 (2)
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Fig. 3: Point clouds segmented.

Table 1: Coefficients of generated planes.

a b c d

Right wall 0.990 0.995 0.124 1.134
Left wall 0.995 -0.030 0.093 -1.204

Roof -0.047 0.999 0.025 0.920
Floor -0.044 -0.999 -0.01 -1.954

where u and v represent the pixel position, fx and fy the focal distance on x
and y axes expressed in pixel-related units, Cx and Cy the principal point co-
ordinates and Xi, Yi and Zi represent the real distances on the three Cartesian
axes.
In the previous step the floor plane was obtained. Applying the formula de-
scribed on 2 to the points belonging to the floor the corresponding pixel in the
RGB image (u, v) can be obtained. From these pixels the colour information is
extracted, and the result is shown on the figure 4
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Fig. 4: Example of floor points projected as pixels.

2.4 Colour parameters analysis

In the original algorithm [5], all the computation needed to compare the colour
parameters is simplified due to the reduction of the information of the pixels to
statistical functions. In our algorithm, among all the possibilities for clustering,
the k-means [10] technique has been selected. This technique divides the input
data into k different groups based on a distance function. When the clustering
has finished, the obtained groups are reduced to 3-dimensional Gaussian dis-
tributions, where each dimension is a parameter of the colour space chosen. A
Gaussian function can be defined using its mean and its covariance. To calculate
these parameters, equations 3 and 4 are used.

µ =
1

n

n∑
i=1

Xi (3)

σ2 = lim
n→∞

1

n

n∑
i=1

(xi − x)
2

(4)

The results of this process are shown in figure 5 and table 2. Each Gaussian
function is assigned a mass which represent the number of points in the input
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floor which are included in that Gaussian. This is useful as a measure of the
importance of each Gaussian.

2.5 Region of interest

Since the labelling of the pixels is colour-based, it could happen that some zones
of the image are labelled as floor when they actually belong to walls, ceiling or
obstacles. Thus, the introduction of a region of interest (ROI) when analysing
the colour information is required. This region will delimit the area in which it
is more likely to find pixels which belong to the floor.

(a) Original RGB image. (b) Floor k-means result with k=3.

Fig. 5: Example of the Gaussian distributions clustering.

Table 2: Example of the Gaussian representation combined with K-means clustering.

R G B

Means 1 122.773 109.447 122.984
Variances 1 249.702 278.566 262.49

Mass 1 309

Means 2 81.9109 62.0661 62.4672
Variances 2 30.2974 31.2947 77.3858

Mass 2 3221

Means 3 94.288 78.1837 85.6717
Variances 3 35.3101 30.9852 60.289

Mass 3 309
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Considering simple corridors, the initial point cloud will be composed by 4
main planes: floor, walls and ceiling. As the parameters of the 3D planes have
been extracted in previous steps, it is possible to find out the 3D line resulting of
the intersection between the walls and the floor. Following, the computed lines
are projected so the ROI parameters are expressed in terms of pixels, as shown
in figure 6.

Fig. 6: Example of a region of interest.

2.6 Floor labelling

In this step all the pixels within the ROI are analysed in order to determine
whether they belong to the floor or are obstacles. This labelling is done according
to the distance between the Gaussian distributions of the learnt floors (µL,i,
ΣL,i) and the colour of the pixel (u, v), denoted as x(u,v). In this case, the
metric employed is the Mahalanobis distance Mi(x(u,v)):

Mi(x(u,v)) =
√

(x(u,v) − µL,i)TΣ
−1
L,i(x(u,v) − µL,i) (5)

Note that this model is independent of the colour space used. Eq. 5 is applied
for every Gaussian distribution i obtained in section 2.4. If the minimum value
Mi(x(u,v)) is below a given threshold th, the corresponding pixel x(u,v) is labelled
as floor i.
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2.7 Map Reconstruction

This last step consists on reconstructing a map from the previous labelled data.
Usually it is not possible to compute the inverse projection of the pixels because
the depth information cannot be extracted with one single frame. However, in
this case the pixels labelled as floor are known to lie in a 3D plane in the
space. Together with the pinhole camera model, it is possible to extract the 3D
position of every pixel. The pinhole camera model is defined by the equation 2
on section 2.3.

Assuming that the axis y is perpendicular to the plane OXZ, ∀(x, z)→ z =
K, and that every point labelled as floor will lie in the plane ax+by+cz+d = 0,
as detailed in figure 7. Therefore, it is possible to compute the inverse projection:

z

x
y

RGB-DiSensor
Learnediflooriplane:
ax+by+cz+d=0

Floorilabellediby
theialgorithm

ROIi
lines

Fig. 7: Kinect coordinates.

Yi = −d
b

(6)

Zi = fy
Yi

v − Cy
(7)

Xi =
(u− Cx)Zi

fx
(8)

The result is shown in the figure 8.
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(a) Segmented floor.
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(b) Map Reconstruction.

Fig. 8: Example of map generation.

3 EXPERIMENTS

In this section a comparison among three different colour spaces is carried out:
RGB [11], HSV and CIELAB [12]. Although the RGB-D cameras work with RGB
colour space by default, the conversions among these spaces are well known [13].

The experiments have been carried out using C++ together with the PCL [14]
and OpenCV [15] libraries.

3.1 Experimental setup

Three different scenarios (corridors) have been chosen, shown in figure 9. Obsta-
cles have been included in all of them but only two of them have been analysed
with both obstacles and clear corridor. In each case 15 frames adquired from the
same point of view have been analysed. 10 different values for th are given from
2 to 5 in RGB and LAB experiments and from 20 to 50 in HSV cases.

(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Fig. 9: Environments employed in the experiments.
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The metrics employed for evaluation will be the Precision/Recall curves and
also the F-score:

Precision =
tp

tp + fp
(9)

Recall =
tp

tp + fn
(10)

F =
2 · Precision ·Recall
Precision+Recall

(11)

where tp stands for true positives, fp for false positives and fn means false
negatives. The results are expressed in terms of means along all the frames for
every value of th.

In this case, precision represents the rate of pixels labelled as floor correctly,
among all the pixels actually considered as floor. Recall presents the sensitivity
of the algorithm to detect floor pixels. And finally, the F term is a combination
of the afore mentioned metrics evenly weighted.

3.2 Results analysis

First, the algorithm is applied to the two obstacles-free environments in order
to test the its performance in an ideal case. As figure 10 shows, the precision
is always 1 because all the pixels within the ROI are floor, fp = 0. The recall
improves since an increment in the th value makes the algorithm to be more
permissive.

After, the algorithm is applied on three different environments with obstacles,
such as people or paper bins, and the results are showed in figure 11.

In all cases, the precision of LAB and RGB are very similar, both of them
higher than HSV. It means that HSV labels more obstacles as floor than the
others. However, the HSV recall value is usually higher. As the th value becomes
more permissive, the precision falls while the recall value increases. In other
words, the algorithm reduces the number of fn but the amount of fp is higher.

Focusing on the F-score, for restrictive values of th the HSV colour space
is more reliable. But if a balanced algorithm is desired, RGB and LAB are the
better choices.

A visual example of the results is given in figure 12. In these images, dark
blue represents the area labelled as floor by the depth sensors, and light blue
represents the zone labelled as floor by the algorithm, all the images are evaluated
with a permisive th value.

Besides, a 2D map representing the segmented floor is shown. In the latter,
a good visual feedback of the different performance between the colour spaces
is clearly seen. HSV example hardly avoids labellin the person in the picture
as and obstacle, while the others present a good performance in close and far
distances. However, all of them label the paper bin on the right as floor.
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Fig. 10: Results in scenarios 1 and 2 with no obstacles.

4 CONCLUSIONS AND FUTURE WORK

In this paper the performance of three different colour spaces has been analysed
using an environment modelling algorithm. The algorithm has been applied on
different environments, with and without obstacles, and Precision vs Recall and
F-score graphics has been used to evaluate the performance.

LAB and RGB colour spaces have produced the best results on the algorithm
with a moderate th value obtaining an equilibrium between floor labelled and
obstacles labelled. HSV colour space is too sensible on the definition of a colour.
For this reason this colour space obtains the best results when the th value is
restrictive.

Some problems have been produced on different environments, which are
a bit difficult to solve. When a bright area is in the depth sensor range, it
usually considered as an independent Gaussian distribution, therefore this colour
is labelled as floor and it will lead to errors. The same problem appears when
an obstacle has the same colour than the floor, because the algorithm detects
different pixels with a very similar colour. In theses cases it is not possible to tell
the difference between floor and obstacles by using only colour pixel information.

With this contribution a better colour space selection can be done. These
results could be enough to choose the correct space colour in environment mod-
elling applications based on colour data.
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Fig. 11: Results in the three scenarios with obstacles in different positions. Maha-
lanobis values of HSV are multiplied by 10.

Future work is focused on improving the algorithm performance introducing
new parameters related to the planes information to try to avoid some problems
if the object has been detected by the depth sensor.
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