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Abstract— This paper presents the application of the Voronoi
Fast Marching method to Path Planning of Mobile Formation
Robots. The Voronoi Fast Marching method uses the propaga-
tion of a wave (Fast Marching) operating on the world model
to determine a motion plan over a viscosity map (similar to
the refraction index in optics) extracted from the updated map
model. The computational efficiency of the method allows the
planner to operate at high rate sensor frequencies. This method
allows us to maintain good response time and smooth and safe
planned trajectories. The navigation function can be classified
as a type of potential field, but it has no local minima, it is
complete (it finds the solution path if it exists) and it has a
complexity of order n (O(n)), where n is the number of cells in
the environment map. The results presented in this paper show
how the proposed method behaves with mobile robot formations
and generates trajectories of good quality without problems
of local minima when the formation encounters non-convex
obstacles.

I. INTRODUCTION

Formation control is currently a topic of vast research in
literature. Different approaches can be classified according to
different criteria. Beard et al [1] consider the different design
approaches and classify them into three groups: leader-
following, where one vehicle is designated as the leader and
the others as followers. The leader posture (position and
orientation) is determined by a trajectory to be tracked or
by external control objectives (e.g., joysticked by a human)
and the followers must track the leader following some
prescribed geometry, possibly dynamically changing over
time [2]; behavioral, where the motion of each vehicle results
from a weighted average of several behaviors, ultimately
contributing to a desired group behavior [3]; virtual structure,
where the entire formation is treated as a single structure,
whose desired motion is translated into the desired motion
of each vehicle [4]. Another possible criterion takes into
account the rigidity of the formation geometry: some authors
specify the full geometry, e.g., the distances and bearings be-
tween the vehicles of the formation and control each vehicle
to ensure that these are accurately achieved [5], requiring a
coordination architecture to switch between geometries when
required by the environment characteristics (e.g., narrow
passages, open spaces) [6]; others see the formation as a
dynamic geometry structure, that naturally becomes distorted
in the presence of obstacles and/or environment geometry
changes [7].

We are particularly interested in leader-following de-
formable formations, where the leader can be virtual and

*Robotics Lab., Universidad Carlos III de Madrid, Spain {sgarrido,
moreno}@ing.uc3m.es, jvgomez@pa.uc3m.es

**Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon,
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tracks a given trajectory, pulling the followers behind it
according to nominal geometry specifications (e.g., desired
inter-vehicle distances) that can change within a given range
so as to accommodate environment conditions. Leonard and
Fiorelli [8] introduced the concept of artificial potential
fields between formation vehicles, some of them virtual
leaders. The nominal inter-vehicle distance corresponds to
minima of the potential functions, representing equilibrium
points that balance inter-vehicle repulsion, vehicle-obstacle
repulsion, and follower-leader attraction. MacArthur and
Crane proposed a similar approach but virtual spring-damper
systems are used to ”connect” the formation vehicles [9]. The
drawback of such approaches is the well-known local minima
problem of potential fields, that may lead to breaking the
formation in the presence of non-convex shaped obstacles.

In a previous paper [10], we have introduced one possible
solution to this problem, where the followers keep track of
the n most recent positions of the leader, and not only its
current position, to be dragged away of the obstacle trap.
However, this method has not been proven to work for
all possible situations. We have also introduced a method
to avoid potential fields local minima for a single vehicle,
using the Voronoi Fast Marching method (VFM) and the Fast
Marching Squared method (FM2) [11],[12],[13].

In this paper we use the Fast Marching (FM) algorithm
to control a leader-follower deformable formation, where
the trajectory of the leader in an environment cluttered by
obstacles is computed using VFM algorithm. Each follower
attempts to reach, at each iteration step, a nominal sub-goal
position related to the desired leader trajectory, but takes
into account the positions of the other followers and the
environment objects, both seen as obstacles. This influences
the metrics used by these algorithms, effectively deforming
the followers’ trajectories. This way we ensure that non-
convex obstacles do not break the formation, and that the
inter-vehicle distances are smoothly deformed while the
formation moves from open areas to regions with obstacles,
narrow corridors, and narrow passages.

The paper is organized as follows: in Section II the Fast
Marching method and some of its variants are summarized.
Its application to robot formations is described in Section
III. The results of applying the method to two different
formation geometries in a diversity of simulation scenarios
are presented in Section IV. The paper ends with conclusions
and prospects for future work (Section V).



II. FAST MARCHING METHOD AND VORONOI FAST
MARCHING METHOD

A. Introduction to Fast Marching and Level Sets
The FM algorithm was introduced by J. Sethian in 1996

and is a numerical algorithm that approximates the viscosity
solution of the Eikonal equation

|∇(D(x))| = P (x) (1)

i. e., the equation for light propagation in a non-homogeneous
medium. The level set {x/D(x) = t} of the solution
represents the wave front advancing with a medium velocity
P (x), which is the inverse of the medium refraction index
R(x). Therefore, the Eikonal equation can be written as
|∇(D(x))| = 1/R(x). The resulting function D is a distance
function, and if the medium velocity P is constant, it can
be seen as the Euclidean distance function to a set of
starting points, usually the goal points. If the medium is
non-homogeneous and the velocity P is not constant, the
function D represents the distance function measured with
the metrics P (x) or the arrival time of the wave front to
point x.

The FM method is used to solve the Eikonal equation and
is very similar to the Dijkstra algorithm that finds the shortest
paths on graphs, though it is applied to continuous media.
Using a gradient descent of the distance function D, one
is able to extract a good approximation of the shortest path
(geodesic) in various settings (Euclidean distance with con-
stant P and a weighted Riemannian manifold with varying
P ).

B. Intuitive Introduction to the Fast Marching Motion Plan-
ner

To get a Motion Planner for mobile robots with desirable
properties, such as smoothness and safety, we can think of
attractive potentials. In Nature, there are phenomena with a
similar behaviour, e.g., the electromagnetic waves. If there
is an antenna in the goal point that emits an electromagnetic
wave, then the robot can drive to the destination by tracing
the waves back to the source. In general, the concept of
electromagnetic waves is especially interesting, since the po-
tential and its associated vector field have the good properties
desired for the trajectory, such as smoothness and the absence
of local minima.

This attractive potential still has some problems. The most
important one that typically arises in mobile robotics, is
that optimal motion plans may bring robots too close to
obstacles or people, which is not safe. To obtain a safe
path, it is necessary to add a component that repels the robot
from obstacles. In addition, this repulsive potential and its
associated vector field should have good properties such as
those of electrical fields. If we consider that the robot has
an electrical charge of the same sign as obstacles, then the
robot would be pushed away from obstacles. The properties
of this electric field are very good because it is smooth and
there are no singular points in the interest space (Cfree).

The main problem of attractive and repulsive potentials
is how to mix the two fields together. This union between

an attractive and a repulsive field has been the biggest
problem of potential fields in path planning since the sum,
difference, or similar operations provoke the appearance of
local minima.

In the proposed algorithm, this problem has been solved
in the same way as Nature does: the electromagnetic waves,
as the light, have a propagation velocity that depends on
the medium due to the refraction index. For example, a flint
glass has a refraction index of 1.6, while in the air it is
approximately of 1.This refraction index of the medium is
the quotient between the light velocity in the vacuum and
its velocity in the medium, i. e., the slowness index of the
front wave propagation in a medium. This idea of mixing
the two potentials as Nature does is the main contribution of
the VFM and FM2 methods [11], [12],[13].

According to Fermat’s principle, the path taken by light
to go from one point to another is the path that minimizes
the time. In the case of a homogeneous medium, in which
the light velocity is constant, the light follows a straight
line. The set of points achieved in a fixed time is a circle.
Consider two media with different refractive indexes, e.g.,
air and water. If a ray of light passes from the first medium
to the second one, the phenomenon known as refraction
occurs. The beam appears to bend when the medium changes.
The light seems to prefer to stay more in the medium with
greater light velocity, as shown in figure 1a). If there is a
continuous change in the refraction index of the medium,
the path obtained is a curve that goes away from areas with
lower light velocity (higher refractive index), as shown in
figure 1b).

In the proposed methods, the repulsive potential is used as
the refraction index of the medium where the wave emitted
from the goal point propagates, as shown in figures 2a) and
2b). Figures 2c) and 2d) show the behavior of the attractive
potential used alone. When the attractive potential uses the
repulsive potential as refraction index, a unique field is
obtained and its associated vector field is attracted to the
goal point and repulsed from the obstacles, as shown in
figures 2e) and 2f). This method inherits the properties of
the electromagnetic field, i. e., it is C∞ if the refraction index
is C∞. Intuitively, the FM method gives the propagation of
a front wave in non-homogeneous media.

a) b)

Fig. 1. a) Propagation of a wave and the corresponding minimum time
path when there are two media of different slowness (refraction) index; b)
the same with a vertical gradient of refraction index.



a) b)

c) d)

e) f)

Fig. 2. a) Repulsive potential; b) Its associated vector field. This potential
can be considered as the metrics, the refraction index, or a viscosity index;
c) Attractive potential; d) Its associated vector field and typical trajectory
obtained with the attractive potential alone; e) Union of the two potentials:
the second one having the first one as refractive index; f) Associated vector
field and typical trajectory obtained with this method.

This repulsive potential can be obtained using the Ex-
tended Voronoi Transform (EVT) of the binary image of
the map. The EVT computes the Euclidean Distance of the
binary image. In a binary image, a pixel is referred to as
background if corresponds to complete absence of obstacles
and its value is one. The value of a pixel is zero if it
corresponds to an obstacle or a wall. For a given distance
metric, the EVT of an image produces a distance map of
the same size. For each pixel in the image, the EVT assigns
a number which is the distance to the nearest zero pixel of
the image. For each pixel inside the objects in the binary
image, the corresponding pixel in the distance map has a
value equal to the minimum distance to the background. This
is the solution adopted in the VFM method.

Clearly, the EVT is closely related to the Voronoi diagram.
The Voronoi diagram concept is involved in many EVT
approaches, either explicitly or implicitly.

Another possibility is to build the repulsive potential using
FM. This is the solution adopted in the FM2 method. In
this case, a wave is propagated starting from the points
representing the obstacles and walls. This wave propagation
is achieved through the FM method. The result is a potential
map, which can be interpreted as a velocity map (or slowness
map) because it gives a clear idea of the robot permissible
velocity at each environment cell. This potential map is
represented in grey scale, where the walls and obstacles are
black and the cells become lighter as long as the distance to
these obstacles increases.

C. Implementation of a Smooth Slowness Potential

This implementation starts with the calculation of the
logarithm of the inverse of the EVT of the 2D environment
updated map (a priori + sensor data) (or the inverse of the
EVT in case of 3D maps). Each white point of the initial
image (which represents free cells in the map) is associated
to a level of grey that is the logarithm of the inverse of the 2D
distance to the nearest obstacles. As a result of this process,
a potential is obtained, proportional to the distance to the
nearest obstacles, for each cell.

This function introduces a potential similar to a repul-
sive electric one (in 2D), that can be expressed as φ =
c1 log(1/r) + c2, where r represents the distance to the
charge and c1, c2 are constants. If n > 2, the potential is
φ = c3

rn−2 + c4, where c3, c4 are constants.
These expressions of the potential φ correspond to the

electric potentials in 2D and higher dimensional cases.

D. Fundamentals of the Method

Maxwell’s laws govern the propagation of the electro-
magnetic waves. We can use the most typical simplification
of the problem in isotropic and possibly non-homogeneous
media for a monochromatic wave, considering the so-called
almost flat waves. In this case, the optical wave propagates at
wavelengths much smaller than image objects, and therefore
the ray optics approximates wave optics. These equations
along with the mentioned approach allow us to develop the
theories based on rays, such as the geometrical optics, the
theory of sound waves, etc. The Eikonal equation is derived
from these equations. In the Sethian [14] notation

|∇(D(x))| = 1/R(x) (2)

where D(x) represents the distance to the initial set, R(x)
is the refraction index of the medium, and x = (x, y) in 2D
or x = (x, y, z) in 3D. In geometrical optics, Fermat’s least
time principle for light propagation in a medium with space
varying refractive index R(x) is equivalent to the Eikonal
equation. The Eikonal solution D(x) is a scalar function
whose isolevel contours are normal to the light rays, and
the refractive index of a medium is the quotient of the light
velocity in the vacuum and its velocity in the given medium.
This equation is also known as the Fundamental Equation of
the geometrical optics.

The most important aspect in this equation, from the path
planning point of view, is that the solution is an exponential
function of the refractive index

D(x, t) = A(x)ej(
ω
c R(x)−ωt) (3)

where ω = 2π
T is the angular frequency, which is constant

because the considered wave is monochromatic, T is the
period, R(x) = c

v(x) is the refraction index, c is the vacuum
light velocity, λ is the wavelength, v(x) is the anisotropic
medium light velocity, and v = λ

T . In this expression, ω and
c are constants and the refraction index is a function of the
position, i. e., the considered medium is anisotropic.

Since this solution is exponential, if the refraction index
or first potential R(x) is C∞ then the second potential D(x)



is also C∞, and therefore the trajectories calculated by the
gradient method over this potential would be of the same
class.

III. ROBOT FORMATIONS AND FAST MARCHING

Robot formations motion planning deals with the problem
of how to find the paths and postures between robots so
that the whole formation can adapt to obstacles and other
environment characteristics.

In this work, we have considered two types of formations:
1) leader-following, where two robots (followers) follow the
leader as if they were bodyguards, forming a triangle among
the three of them; 2) leader-protecting, a formation of six
robots in hexagonal configuration protecting the center of
the formation (leader). The leader will not be represented
in the leader-protecting figures for the sake of clarity and
simplicity.

As stated before, the FM method is based on a potential
function without local minima that provides smooth tra-
jectories. The main problem to deal with is how to apply
this method to the robot formation motion, keeping its
good properties. To solve this problem a repulsive force is
needed between the formation robots so that they keep a
security distance and do not end up crashing into each other.
Furthermore, an internal attractive force is also required for
maintaining the formation while adapting to the environment.

The advantage of using the VFM method, as proposed
here, is that each robot, at each time, has one single potential
which is attractive to the objective and repulsive from walls,
obstacles, and the other robots of the formation, while
keeping the desired nominal inter-robot distances.

A. Description of the Algorithm of Robot Formations Motion
using Fast Marching

1) Base Method: As shown in the previous section, the
VFM method is based on the construction of two potentials:
the repulsive or first potential W, that can be interpreted
as the metrics, the viscosity, or the refraction index of the
medium, and the second potential D with funnel shape, that
represents the distance to the goal point measured with the
metrics W.

The best solution for a robot to keep the distance from
others is to set them as obstacles in the environment map,
expressed in a matrix Woti. The computational cost of this
method is higher, since similar matrices Woti, W

t
i and Dt

i

(see next section) have to be computed at each step. However,
this approach preserves the good properties of FM and avoids
the appearance of local minima.

The VFM algorithm consists of an initialization and a
loop. In the initialization:

• The initial map of the environment is read.
• The path of the leader is calculated using VFM applied

to this map.

Each cycle of the loop represents a step of the movement
of the robots. Within the loop:

1) For each cycle t, each follower robot i has its own map
Woti of the environment, which is the initial map, with
the other robots of the formation placed as obstacles:

Woti = f(Mt
GL,M

t
Li)

i. e., the map Woti is a function of the global map
Mt

GL and the local map Mt
Li, and the local map

Mt
Li is the union (occupancy map) of the map sensed

by robot sensors and the map with the other robots’
positions:

Mt
Li = Mt

Si +Mri,i6=j

This matrix Woti is different for each follower robot
i:

Woti 6= Wotj for i 6= j

This matrix Woti is binary: its entries are 0 (black) in
the wall and obstacle locations (including the other
vehicles) and 1 (white) in the free space, but also
it could be the probability of occupancy. The fact
of having the other vehicles as obstacles acts as a
repulsive force between these vehicles.

2) The metrics matrix for robot i Wt
i is calculated ap-

plying the EVT operator to the matrix Woti for each
vehicle and then taking the logarithm of the result in
order to have a repulsive field similar to the electric
one. This matrix is obtained using the obstacles and
walls initially set for the FM method. This way, the
matrix Wt

i is composed of real numbers, with value
0 in the walls and obstacles and real grey levels in
the rest. The grey levels are darker near walls and
obstacles.

Wt
i = log(gFM (Woti))

The matrix Wt
i represents the metric P (x), the vis-

cosity, or the inverse of the refraction in the Eikonal
equation.

3) The partial goal points are calculated using the leader
path and the desired formation. The Euclidean distance
from the partial goals to the leader path is proportional
to the grey level of the partial goals position. This
way, the formation tends to be near the initial positions
and partial goals act as attractive forces between the
vehicles.

4) The distance matrices Dt
i are calculated applying the

FM method to the metrics matrix Wt
i for each robot,

using as goal the partial goal of the previous step.

Dt
i = hFM (Wt

i)

5) The path of minimum distance measured with the
metrics Wt

i from each vehicle to its partial goal is
found using its Dt

i potential and the gradient method.
6) All the robots move a fixed number of points on the

corresponding path.
7) The leader advances its path position a fixed number

of points on the initialization path.



The aforementioned attractive and repulsive forces be-
tween the vehicles act as glue in order to maintain the for-
mation, but with enough freedom to take the other obstacles,
bends, and narrow passages into account. Some interesting
aspects of the process are shown in figure 3 and the results
of this main method are shown in figure 4 and figure 5.

2) Adding Springs: When there are highly symmetric
situations, i. e., the robots have to traverse a small door
and they are initially placed orthogonally to the wall, the
two follower robots have problems to pass together through
the door. These highly symmetric situations can be detected
when one follower is close to other being possible to crash
into each oher. In order to solve this problem, it is necessary
to introduce a precedence order. For example, if there is no
room for the two robots to pass, the second one has to pass
first, and then the third (the first is the leader).

The solution proposed to this problem is to calculate first
the complete trajectory for the second follower and then the
complete trajectory for the last follower. This provides an
effect similar to using springs with different stiffness between
the robots. This effect can be seen in figures 6 and 7.

a) b)

c) d)

e) f)

Fig. 3. a) Trajectory of the leader obtained with V FM ; b) Robot Formation
(rectangles) with the corresponding partial objectives (circles) and the partial
trajectories of the followers; c) and d) Metrics Matrix Wt

i for each of the
follower robots in a particular step where the other robots are treated as
obstacles in the map; e) and f) The Distance Matrix Dt

i measured with the
metrics Wt

i for each of the follower robots.

Fig. 4. Consecutive steps of the robots’ formation traveling around the
maze using the main method (the first robot is the leader).

Fig. 5. Consecutive steps of the robots’ formation traveling around the
maze using the main method with formation of six robots protecting the
center of the formation.

Fig. 6. Consecutive steps of the robots’ formation traveling around the
maze using the method with springs.



3) Maximum Energy Configuration: Another interesting
problem refers to what the formation must do if the nearest
passage is narrower than the width of the robot formation,
where the width of the formation is the orthogonal diameter
to the movement direction. The solution is to specify the
smallest possible formation size (or the maximum energy
configuration) beforehand and search for another possible
passage larger than this size. When the formation is in an
open space, the minimum energy configuration is obtained
since the formation reaches the desired formation. In the
presence of obstacles the formation cannot have exactly the
goal shape deforming the formation (increasing the energy).
Therefore the energy can be computed as proportional to
deformation.

The solution proposed is to dilate the walls and obstacles
with the minimum radius of the robot formation. Then, the
trajectory of the leader is found using this dilated map. This
way, it is ensured that the formation passes through the
passage used by the leader trajectory. Using this trajectory,
the rest of the algorithm is similar to the main method:

1) The partial goal points are calculated using the leader
path and the desired formation. The Euclidean distance
from the partial goals to the leader path is proportional
to the grey level of the partial goals position.

2) The distance matrices D are calculated using the
metrics matrix W for each robot, using as goal the
partial goal of the previous step.

3) The minimum distance path to the partial goal is found
using the potential D.

4) All the robots move a fixed number of steps on the
corresponding path.

5) The leader advances its path position a fixed number
of steps.
The results of this solution are shown in figure 7

B. Reduction of the operational cost

Although the FM method is very fast (the computation
time is 0.2 sec for figures 4 and 6, where the map has a size of
628x420 cells), the proposed algorithm for robot formations
has to calculate the FM wave propagation for each follower
robot at each cycle of the algorithm. For this reason some
techniques should be used to make the algorithm faster.

Since the FM method can be considered as the continuous
version of Dijkstra’s algorithm, our goal is to turn it into an
almost one-dimensional algorithm. To achieve this, the VFM
method is applied in a tube around the trajectory calculated
for the leader. Thus, the propagation of the FM wave across
the map is calculated only the first time to find the trajectory
for the leader; the other times (once per cycle and follower
robot) it is calculated in a tube around this trajectory, which
drastically reduces the computation time. The steps are:

1) Enlargement of the trajectory calculated for the leader
to get a tube. To achieve this, this trajectory is dilated to get
a tube, and the intersection between this tube and the map
obtained from the environment (walls and obstacles) is used
as the starting matrix Woti (see figure 8).

Fig. 7. Consecutive steps of the robots’ formation using the maximum
energy configuration with springs. The formation does not use passages
narrower than its maximum energy configuration.

2) VFM-1st step. Using the map obtained in the pre-
vious step, a wave is propagated starting from the points
representing the obstacles and walls. This is done with the
Extended Voronoi Transform (also called Distance Transform
in Computer Vision). The result is a potential map, which
can be interpreted as a velocity map (or slowness map), as
shown in figure 8c).

3) VFM-2nd step. Based on the previous slowness map,
the FM method creates a new potential Dt

i that represents
the propagation of the electromagnetic wave from the goal
to the robot position.

An even more important reduction of the computation
time is related to the matrix Dt

i, as follows. As the vehicles
are very close to the partial objectives, the expansion of
the wave over the whole map is not necessary, but just
its expansion into the tube, from the partial goal point to
the corresponding vehicle. With this change the computation
time of the matrix Dt

i, which is the most time consuming
part of the algorithm, goes from 0.2 sec to 0.016 sec
which implies an algorithm cycle of about 0.5 sec without
parallelization (using a MacBook Pro platform at 3.06 GHz).
The parallelized version of the algorithm has an algorithm
cycle of about 0.3 sec and permits the use of many followers
without increasing the computation time.

IV. SIMULATION RESULTS

The algorithms of the previous sections have been tested
using Matlab simulations. A program has been created in
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Fig. 8. VFM calculated in a tube. a) Trajectory calculated for the leader; b)
Intersection between the dilatation of the leader trajectory and the walls and
obstacles; c) Extended Voronoi Transform of the tube; d) Robot Formation
(rectangles) with the corresponding partial objectives (circles) and the partial
trajectories of the followers calculated in the tube. e) Maximum possible
velocities of the three robots.

which the initial and goal points are given and the VFM
method is used for the leader and the rest of the formation.
The method uses a nominal desired formation that are
the partial goals with a distance orthogonal to the leader
trajectory proportional to the grey level of the actual position.
The followers’ trajectories to the partial goals are calculated
using the VFM method. The results are shown from figure
4 to figure 5.

The method has been designed for holonomic robots, but
it is possible to apply the techniques that we used for non-
holonomic robots in [15].

The method has been used giving a sequence of points,
joining these points with lines to obtain the leader trajectory.
Using this trajectory , the followers’ trajectories are calcu-
lated in the same way as in the main proposed method. In
this case, the direction in the given points changes abruptly.
It is important to study the behavior of the method in these
points, and we can observe that it behaves very well and even
smoothes the followers’ trajectories in comparison with the
leader one, as shown in the figures.

The inter-vehicle desired distance has a maximum value
in open areas and proportional to the refraction index in the
rest. This way, in small corridors the followers can be near

each other.
Figure 4 shows an example of a team composed by two

vehicles following a moving leader using the main proposed
method. The lines connecting each of the three vehicles
represent the formation links between them. The circles
represent the partial objectives that change at each step of
the algorithm. The lines from vehicles to the circles are the
partial paths calculated using VFM.

Figure 6 shows a similar case using the proposed method
with springs of different stiffness. With this improvement the
symmetry of the followers paths is broken and it is easier to
pass trough small passages.

Figure 5 shows consecutive steps of the robots’ formation
traveling around the maze using the main method, with a
formation of six robots protecting the center of the formation.
The EVT can be considered as a viscosity or the inverse of
the velocity of the medium. This way the method gives a
maximum velocity in each point of the trajectory as shown
in Figure 8e).

Figure 7 shows consecutive steps of the robots’ formation
using the maximum energy configuration with springs. The
formation does not use passages narrower than its maximum
energy configuration.

In the simulations, the algorithms always determine a safe
path where the robots avoid obstacles, keep the formation
geometry in open space, and deform it when necessary to
handle the presence of obstacles. Simulation results show
that the method does not have local minima (unlike the
spring-damper or other potential-based techniques) which
naturally results from the method used (light propagation has
no local minima) and is a distinctive property with respect to
potential fields and other similar methods in the class of mo-
tion planning algorithms. Furthermore, the method naturally
ensures trajectory tracking by all the formation robots, since
it naturally induces the required velocities at each point, if
one wants to reach the goal in minimum time (according to
(W ) metrics), taking into account the constraints imposed by
the presence of obstacles and the formation geometry. Even
more, physical modeling is avoided in the proposed method
and also it is very easy to implement, making it easier to
include as many robots as wanted.

V. CONCLUSIONS, APLICATIONS AND FUTURE WORK

This paper presents a new methodology for the motion of a
formation of holonomic robots. The formation is maintained
by calculating the trajectory of the formation leader. In each
iteration of the algorithm, using this trajectory, the partial
robot objectives are calculated. These partial objectives main-
tain the formation and have a variable distance between them
proportional to the light velocity in that point (inverse of the
refraction index). Each robot has an environment map with
the other robots as objects. This map is used to construct the
refraction index map or metric P(x) using the FM method.



Using this metrics, the distance function D(x) representing
the distance function measured with the metrics P(x) is built
with the FM method. The partial trajectory of each robot is
calculated with the gradient method.

The general trajectories have a behavior like the light
trajectory in a space with larger refraction index near the
obstacles and walls and with an attraction force that tries to
maintain the formation.

The proposed method is highly efficient from a compu-
tational point of view, since the Fast Marching complexity
is O(n) and the Extended Voronoi Transform complexity is
O(n), where n is the number of cells in the environment
map.

The main contribution of the method is that it robustly
achieves smooth and safe motion plans in real time that
can be used at low control levels without an additional
smoothing interpolation process. This allows the method to
fuse collision avoidance and global planning in only one
module, which can simplify the control architecture of the
mobile robot, and without local minima, as in the case of the
potential fields original method and some other algorithms
in the same class.

Additionally, it pushes the state of the art in formation
control since it introduces an algorithm that simultaneously
enables deformable formations but avoids the local minima
problem of potential fields by using a distance function based
on a metric built with the FM method. This is particu-
larly relevant for the formation to handle concave obstacles
without some of the formation robots being trapped in the
obstacles, due to local minima of the inter-robot composition
of attractive and repulsive potentials. Moreover, the path of
the leader to the goal avoids obstacles and is free of local
minima, since it relies on the VFM method. Other local-
minima free methods could be used for the latter purpose,
e.g. [16].

Focusing on the applications of the method described and
all its variants, it is possible to say that there is a great amount
of applications. On pure robotics applications, this methods
can be applied in exploration tasks where only one robot is
not enough to explore due its sensors or the objective is to
create a map in the shortest time possible.

Also, robot formations can be applied in surveillance tasks
where all the robots have to move in different places but
keeping a distance or formation between them.

In industry, the applications of robot formations are very
interesing. The Automatic Guided Vehicle (AGV) are widely
used in manufacturing plants. Actually AGV use to be
medium size vehicles which are able to transport products
from one point to another autonomously but one limitation
is the size of the product. If a product is larger enough to
not be able to be transported by only one AGV, it is possible
to configure a robot formation in order to use more than
1 AGV to move the piece through the manufacturing plant

while avoiding obstacles, people and other AGVs.
Of course, there could be much more applications: mili-

tary, space, agricultural [17], etc.
The future work is related with the introduction of sen-

sor noise, uncertainty in the map (with connections with
SLAM) and the introduction of small obstacles and moving
obstacles.All these questions can be implemented by adding
Gaussian functions that model the uncertainty to the distance
potential Dt

i of each robot.
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