
CARLOS III UNIVERSITY OF MADRID

DEPARTMENT OF SYSTEMS ENGINEERING AND AUTOMATION

MASTER’S THESIS

ADVANCED APPLICATIONS OF THE FAST

MARCHING SQUARE PLANNING METHOD

Author: Javier V. Gómez González

Advisor: Dr. Santiago Garrido Bullón

OFFICIAL MASTER’S PROGRAM IN ROBOTICS AND AUTOMATION

LEGANÉS, MADRID

NOVEMBER 2012



ii



CARLOS III UNIVERSITY OF MADRID

OFFICIAL MASTER’S PROGRAM IN ROBOTICS AND

AUTOMATION

The committee approves the Master’s thesis titled

“Advanced Applications of the Fast Marching Square

Planning Method” done by Javier V. Gómez González.

Date: November 2012

Committee:
Dr. Luis Moreno Lorente

Dr. Concepción A. Monje Micharet

Dr. Beatriz López Boada





To those who trusted me without knowing me and to those who

know me and still do it.

To PR2, Justin, Stanley, Junior, PetMan, Asimo, Nao, Qbo and

many others... because your performance keeps me awake.





Contents

Tables Index x

Figures Index xii

Acknowledgments xix

Resumen xxi

Abstract xxiii

1 Introduction 1

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The State of the Art in Robot Path Planning 3

2.1 Classification of the path planning algorithms . . . . . . . . . . . 3

2.2 Latest trends in path planning research . . . . . . . . . . . . . . . 7

2.2.1 Multi-robot systems: state of the art . . . . . . . . . . . . . 9

2.2.2 Motion learning algorithms: state of the art . . . . . . . . . 10

2.3 Fast Marching Methods in path planning: previous work . . . . . 12

vii



3 Fast Marching Square Planning Method 13

3.1 Fast Marching Method (FMM) . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Intuitive introduction to the Fast Marching Method . . . . 14

3.1.2 Mathematical formulation of the Fast Marching Method . 16

3.1.3 Implementation details of the Fast Marching Method . . . 17

3.1.4 Application of Fast Marching Method to path planning . . 19

3.2 Fast Marching Square planning method (FM2) . . . . . . . . . . . 23

3.2.1 Saturated variation of the Fast Marching Square Method . 25

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Robot Formation Path Planning based on the FM2 Method 31

4.1 Introduction to robot formation motion planning problem . . . . 31

4.2 Basic robot formation planning algorithm using FM2 . . . . . . . 32

4.3 Inclusion of uncertainty on the basic algorithm . . . . . . . . . . . 39

4.3.1 Velocity saturation . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Mobile obstacles . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Formation planning algorithm in 3D . . . . . . . . . . . . . . . . . 53

4.4.1 Frenet-Serret formulae . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Implementation considerations of the Frenet trihedron . . 57

4.4.3 Application of the Frenet trihedron to 3D robot formation

path planning . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . 60

5 Adapting FM2 Method to the Environment 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 FM2 skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Path planning over the FM2 Skeleton . . . . . . . . . . . . . . . . . 66

5.3.1 Setting the parameters . . . . . . . . . . . . . . . . . . . . . 68

5.4 Extension to d-dimensions . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . 72



6 Kinesthetic Teaching and Learning based on FM2 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Kinesthetic Teaching and Learning Algorithm Based on FM2 . . . 76

6.2.1 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Analysis of the parameters . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Extension to 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . 89

7 Performance Study of FM2 for Remote Handling Operations in the

ITER Project 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Collision detector based on FM2 . . . . . . . . . . . . . . . . . . . 97

7.2.1 Collision detector validation and simulation . . . . . . . . 99

7.3 Performance of the FM2 method in the ITER environment . . . . . 100

7.4 Planning in 3 dimensions with FM2 in ITER environments . . . . 103

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Integration of FM2 in the TES Program of the ITER Project 105

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2 Path planning procedure in the TES program . . . . . . . . . . . . 108

8.2.1 Geometric path evaluation . . . . . . . . . . . . . . . . . . 109

8.2.2 Path optimization . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2.3 Trajectory evaluation . . . . . . . . . . . . . . . . . . . . . . 115

8.2.4 Geometric path evaluation issues . . . . . . . . . . . . . . . 116

8.3 Replacing geometric path evaluation with FM2 . . . . . . . . . . . 116

8.4 Simulated results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.5 Inclusion of maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.6 Performance of the saturated variation of FM2 . . . . . . . . . . . 126



8.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . 129

9 Conclusions and Future Work 131

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.3 Relevance of the work . . . . . . . . . . . . . . . . . . . . . . . . . 133

A List of Acronyms 135

References 137



Tables Index

5.1 Time results depending on the algorithm parameters. . . . . . . . 70

8.1 Number of maneuvers for every port of the TB. . . . . . . . . . . . 122

8.2 Results of maneuvers simulations in terms of iterations and time

elapsed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 Comparison of FM2 and its saturated variation in terms of itera-

tions and time elapsed. . . . . . . . . . . . . . . . . . . . . . . . . . 127

xi





List of Figures

2.1 Classification of the current path planning approaches. . . . . . . 6

3.1 Iterations of the FMM in a 5x5 grid map with one wave source. . 19

3.2 Iterations of the FMM in a 5x9 grid map with two wave sources. . 19

3.3 FMM applied over a grid map. The arrival time is shown in the z

axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Steps of the FMM applied to path planning. . . . . . . . . . . . . . 22

3.5 Steps of the FM2 applied to path planning. . . . . . . . . . . . . . 24

3.6 Velocity profile of the path shown in Figure 3.5 . . . . . . . . . . . 24

3.7 Results of the saturated version of FM2 for different saturation

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Velocity profiles of the paths shown in Figure 3.7 . . . . . . . . . . 28

4.1 Top left - Main components of the robot formation algorithm. Top

right - Reference geometric definition of a simple, triangle-shaped

robot formation. Bottom left - Behaviour of the partial goals de-

pending on the leader’s pose. Bottom right - Behaviour of the

partial goals depending on the obstacles of the environment. . . . 35

4.2 Flowchart of the basic robot formation planning algorithm using

FM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xiii



4.3 a) Snapshot of the formation moving. The leader follows the blue

path. The green triangle (leader-partial goals) is the desired for-

mation and the red triangle (leader-followers) is the current for-

mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Sequence of movement of a robot formation with the basic path

planning algorithm, simulated in a map of our laboratory ob-

tained with SLAM techniques. . . . . . . . . . . . . . . . . . . . . 38

4.5 Example of a system which is able to capture the position and

orientation of the robots by using a camera and colour labels on

the robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Flowchart of how the velocities map is modified for every robot

in the formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Steps of the formation planning method including uncertainty. . . 44

4.8 Sequence of movement of a robot formation with the proposed

path planning algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Sequence with a different formation. This time, 3 robots travels in

a line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 Sequence of movements of a robot formation composed of 4 robots. 47

4.11 Comparison of the velocities map created for the second follower

with the basic algorithm (top) and using uncertainty functions

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.12 Steps of the robot formation algorithms with saturated velocities

map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.13 Sequence of movements of a robot formation using velocities map

saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.14 Top - Velocities map of the leader at time T, WT
leader, with the

followers and obstacles included with their uncertainty function.

Bottom - Current position of the formation and the obstacle. . . . 54



4.15 Navigation sequence of a formation in a real environment. The

trajectories of the robots (red) and obstacles (pink) are included

(the sharp trajectories of the followers are due to simulation dis-

cretization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.16 The red vector represents the tangent to the trajectory and the red

circle the perpendicular plane to this vector. . . . . . . . . . . . . . 56

4.17 Schema of the definition of the geometry in 3D based on the Frenet

trihedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.18 Sequence of a pyramid-shaped robot formation (represented by

cones) navigating in a 3D environment. . . . . . . . . . . . . . . . 62

5.1 Flowchart of the construction of the FM2 skeleton. . . . . . . . . . 65

5.2 a) Initial binary map with the set of n points randomly chosen but

uniformly distributed. b) Wp map. . . . . . . . . . . . . . . . . . . 66

5.3 Use of the FM2 skeleton in path planning. . . . . . . . . . . . . . . 67

5.4 a) Comparison of the paths obtained with the saturated varia-

tion of the FM2 method (in red) and the proposed method (in

blue) shown over the thickened skeleton. b) Same comparison

but shown over the initial map. c) Potential obtained when prop-

agating the wave through other skeleton of the same map. Blue

means getting closer to the global minimum and red means that

the time is increasing. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Skeleton depending on the different parameters. In most cases

the path obtained using the FM2 skeleton (blue) is very close to

the one obtained with the standard FM2 method (red). . . . . . . 70

5.6 Example of application of the algorithm in 3 dimensions. . . . . . 72

6.1 Flowchart of the learning method based on the FMM. . . . . . . . 78

6.2 Different steps of the learning algorithm. . . . . . . . . . . . . . . 79



6.3 Two examples of D(x). a) D(x) depends on the environment and

also on the path taught. b) D(x) depends only on the experience. 80

6.4 Comparison between SEDS and FM Learning. . . . . . . . . . . . 81

6.5 Different paths using learned data depending on the aoi parame-

ter in a 500x500 pixels map. a),b) aoi = 10 pixels. c),d) aoi = 30

pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 Comparison among different aoi values for a given sat level in a

500x500 workspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.7 Comparison among different sat level value for given aoi sizes in

a 500x500 workspace. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.8 a) D(x) map obtained from Manfred. b) Comparison between the

taught trajectory and the one reproduced once the robot has learned. 86

6.9 The robot Manfred V2 developing the trajectories. a) Taught tra-

jectory. b) Reproduction with FM Learning starting from a differ-

ent point and with almost the same goal point. . . . . . . . . . . . 86

6.10 Taught trajectories (blue and red) together with the map W and

two reproductions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.11 The robot Manfred V2 developing the taught trajectories in 3D. . 88

6.12 The robot Manfred V2 developing the learned trajectories in 3D. . 88

7.1 Left - CAD model of the CPRHS. Middle - Level B1 of the TB

with the CPRHS in operation. Right - Snapshot of the software

application TES to evaluate the trajectory optimization. . . . . . . 93

7.2 Left - Model of the rhombic vehicle and the Cask Transfer System

control variables. Right - Possible motion options for a rhombic

like vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Comparison of the different kinematic configurations. . . . . . . . 95

7.4 Level B1 of the TB and its corresponding port numbers. . . . . . . 96

7.5 Level B1 of the TB and its corresponding port numbers. . . . . . . 96

7.6 Use of the velocities map as a collision checker. . . . . . . . . . . . 97



7.7 Application of the collision checker to the CPRHS. . . . . . . . . . 98

7.8 Gradients in the level B1 of the TB. . . . . . . . . . . . . . . . . . . 98

7.9 Application of the collision checker to the CPRHS. . . . . . . . . . 99

7.10 Sequence of the CPRHS navigating and using the proposed colli-

sion detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.11 Path and CPRHS’ poses from the lift to the ports. Red CPRHS

means collision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.12 Minimum distances during the motion. . . . . . . . . . . . . . . . 101

7.13 Velocities profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.14 Paths computed in 3D, using the orientation as third dimension. . 103

8.1 A - Simulation window (A1 vehicle, A2 trajectory, A3 maps. B -

Main menu. C - Tuning panel. D - Navigation panel. E - Tools

panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 Example of a report provided by TES. . . . . . . . . . . . . . . . . 107

8.3 Path planning procedure in TES. . . . . . . . . . . . . . . . . . . . 108

8.4 The initial map with the generated Constrained Delaunay Trian-

gulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.5 Sequence of triangles that link the start and goal positions. . . . . 110

8.6 Sequence of points that generate the initial path of the procedure. 111

8.7 Simulation of the CPRHS executing the initial path. . . . . . . . . 113

8.8 Schema of the elastic bands concept applied in the path optimiza-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.9 Simulation of the CPRHS executing the optimized path. . . . . . . 114

8.10 From left to right: the initial map with the generated CDT and the

computed sequence of triangles between start and goal points,

initial geometric path, path optimization and final optimized tra-

jectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.11 Top: distance to the closest obstacle. Bottom: CPRHS velocity

profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



8.12 Left - initial geometric path obtained with CDT; Right - trajectory

obtained with FM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.13 Work flow for trajectory optimization. . . . . . . . . . . . . . . . . 117

8.14 Schema of the path evolution in each iteration during the trajec-

tory optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.15 Definition of the variation of the path between consecutive itera-

tions: distance evaluated to a single point. . . . . . . . . . . . . . . 118

8.16 From left to right: map of level B1 in TB, CDT of the map, geo-

metric path obtained from CDT and path obtained with FM2. . . 119

8.17 Trajectories for port 12: FM2 (green) and CDT (blue). . . . . . . . . 120

8.18 Variation of the median (in red) along iterations for port 12 in level

B1 of TB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.19 Comparison between the minimum distances along the optimized

trajectories using the CDT and FM2 initializations for port 12 in

level B1 of TB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.20 Comparisons of computational time (left) and number of itera-

tions (right) for trajectory optimization using CDT and FM2. . . . 121

8.21 Examples of trajectories which requires maneuvers. The maneu-

ver pose is defined by the location of the wheels. . . . . . . . . . . 122

8.22 Maneuvers in port cell 7: FM2 (green) and CDT (blue). . . . . . . 124

8.23 Maneuvers in port cell 18: FM2 (green) and CDT (blue). . . . . . . 125

8.24 Comparison of the different velocities map W employed. . . . . . 126

8.25 Maneuvers in port cell 7: saturated FM2 (green) and CDT (blue). . 127

8.26 Maneuvers in port cell 18: saturated FM2 (green) and CDT (blue). 128



Acknowledgments

I want to acknowledge all those people who helped me during my research the

last year and a half.

First of all, thanks to Diego Rodríguez-Losada, Alberto Valero, Miguel Her-

nando and Pablo San Segundo, I am here thanks to you.

Of course, thanks to Santiago Garrido, Luis Moreno and Dolores Blanco for

giving me this great opportunity.

Thanks also to my laboratory mates: David Álvarez, Alejandro Lumbier,

Fransico Rascón, Antonio Flores, Dorin Copaci, César Arismendi and many oth-

ers. My work would never have been that good without your very useful help.

Also, thanks also to Alberto Vale, the IPFN team and Pedro Lima. It has

been such a pleasure to work with you and I hope to continue during many

many years.

Moreover, thanks to Frode Eika Sandnes and Nikolaos Mavridis. The expe-

riences I shared with you are enough motivation to continue working.

Last, but not least, thanks to my family and friends. Now you know why I

was so missing the last months.

This work was supported by the project number DPI2010-17772 and HYPER

project funded by CONSOLIDER-INGENIO 2010, both from the Spanish Min-

istry for Science and Innovation.

xix





Resumen

Con frecuencia algunos investigadores consideran el problema de la planifi-

cación de trayectorias resuelto. Estas peligrosas afirmaciones no pueden estar

más lejos de la realidad. Aunque este campo ha sido investigado desde hace

más de 30 años, aún quedan multitud de problemas abiertos. Los investigadores

deben centrarse en ellos con el objetivo de acercar más los robots a aplicaciones

reales. Para ello los algoritmos deben ser robustos y fiables ante situaciones cuyo

modelado es realmente complejo.

Esta Tesis de Máster recopila algunos de los problemas de gran interés para

la comunidad en la actualidad. Por ejemplo, se estudian los sistemas multir-

robot, se aborda el aprendizaje por demostración y se analiza el complejo caso

del proyecto ITER (International Thermonuclear Experimental Reactor) y sus

operaciones de manipulación remota. En todos estos casos se usa el algoritmo

de planificación Fast Marching Square que, como se detalla en las siguientes

páginas, proporciona una robustez y calidad de trayectorias que pocos algorit-

mos son capaces de igualar.

Palabras clave: Planificación de trayectorias, Fast Marching, Fast Marching

Square, Aprendizaje, Planificación de Formaciones de Robots, Proyecto ITER.
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Abstract

It is common that many researchers consider the path planning problem solved.

These dangerous sentences are far away from reality. Although this field has

been explored during more than 30 years, there are still many unsolved prob-

lems. Researchers should focus on these with the objective of bringing robots

closer to real applications. For this, the algorithms have to be robust and reliable

in situations whose modeling is quite complex.

This Master’s Thesis collects many of the problems of high interest for the

community. For instance, multi-robot systems are studied, programming by

demonstration is explored and the complex case of the remote handling oper-

ations of the ITER project (International Thermonuclear Experimental Reactor)

are analyzed. In all these, the Fast Marching Square planning method is used.

This, as detailed in this document, provides a path quality and robustness that

only a few algorithms are able to reach.

Keywords: Path planning, Fast Marching, Fast Marching Square, Learning,

Robot Formation Planning, ITER Project.
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Chapter 1
Introduction

The objective of this work is to detail novel approaches to complex prob-

lems related with path planning, creating a general path planning frame-

work.

The path planning problem is considered solved by some researchers. They

argue that the current existing solutions are good enough to solve most of the

problems that require robot motion. However, it is still one of the most active

fields in robotics research. In fact, in the last IROS conference (October, 2012)

path and motion planning was the topic which occupied more sessions. There-

fore, many researchers are still focusing their efforts on the path planning prob-

lem, trying to come up with better, faster and more general planning frame-

works or modelling the real world in a more complex way.

Hence, it turns out that the path planning problem is not as solved as many

people think. It is true that there exist very good solutions but none of them

can be considered as a general framework. In fact some approaches only per-

form well in specific cases or are notable to adapt to new models of robots or

environments.



2 Introduction

1.1 Context and motivation

As metioned before, we consider that a good path planning approach has to

perform well in many different cases, because it is not optimal to have different

path planning algorithms for every different situation. This would require to

distinguish those different situations and implement many different algorithms,

which is complex and very time consuming.

In this context, we focus this thesis in solving many different problems with

the same path planning algorithm: Fast Marching Square (FM2). The character-

istics of this planning method allow it to be adapted to several problems with

a very different point of view. Here, the high level problems are translated into

path planning ones instead using the path planning as a tool or intermediary

step.

Facing the problem this way, we show in the next chapters that the FM2 is a

very good candidate to be considered as a general path planning framework.

1.2 Document structure

In the next chapter, a detailed state of the art of the different problems tackled in

this thesis is given. In chapter 3 we describe in detail the FM2 algorithm, which

is going to be our base for the next chapters. Chapter 4 focuses on the robot

formation path planning problem and how we faced it with FM2. Following,

chapter 5 creates a variation of the FM2 which allow to reduce the time com-

putation of the paths, focusing on the application of FM2 for high dimensional

spaces. Then, chapter 6 shows how motion learning can be implemented within

the FM2 framework.

In chapters 7 and 8 the FM2 is applied to a demanding problem: the Inter-

national Thermonuclear Experimental Reactor and its Remote Handling opera-

tions.

Lastly, the conclusions of the thesis are included in chapter 9



Chapter 2
The State of the Art in Robot Path

Planning

Path planning has been a very active field from the beginning of the artificial

intelligence. Although currently there are very good approaches, there is not

any algorithm able to satisfy all the requirements that a path planning algo-

rithm needs to satisfy: low computational complexity, reliability, completeness,

robustness, smooth paths, optimal solutions, safety, etc.

The algorithms which are very fast usually provide non-smooth paths, so a

smoothing step is required aftewards. On the other hand, the algorithms whose

solutions are smooth are usually fast in 2 dimensions (or even three) but their

usefulness decrease as the dimensionality is increased.

2.1 Classification of the path planning algorithms

There is a huge literature in path planning. However, most of the path planning

algorithms can be classified as follows:

• Geometric methods: The environment is described as a set of polygons and,

from their properties, the paths are computed as a sequence of primitives
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such as lines, arcs, splines, etc. The most common approach of this class

are those based on visibility graphs (Asano, Asano, Guibas, Hershberger, &

Imai, 1986; Ghosh & Mount, 1991). The visibility graph of a set of nonin-

tersecting polygonal obstacles in the plane is an undirected graph whose

vertices are the vertices of the obstacles and whose edges are pairs of ver-

tices such that the open line segment between each two vertices does not

intersect any of the obstacles. Although this approach is very intuitive, it is

not possible to extend it to more than two dimensions. Also, to determine

the visible portions of the map is a very complex problem.

Other common geometric approach is to compute the path using the De-

launay triangulation of the environment (Delaunay, 1934). This is one of

the most widely-employed triangulation algorithms because it minimizes

the sum of all the angles of the triangles in the triangulation. Although

its complexity is O(n log(n)) in 3D spaces for n points in smooth surfaces

(Attali, Boissonnat, & Lieutier, 2003), its main drawback is that the trian-

gulation is not unique and it can lead to very weird paths, as we detail in

chapter 8.

• Graph-based methods: This is the class in which most of the algorithms are.

In this class, the environment is modeled by the state of the robot with

respect itself and also with the environment. A graph is built in which

every node is one state of the robot and its environment. The transitions

between states are modeled as costs and the path chosen is the one that

minimizes the total cost of reaching a goal state from a current state.

There exist several subclasses within the graph search method, depending

on how the graph is constructed and also how the costs are assignated.

One of the possible classifications is:

– Grid-based methods: characterized by discretization of the space in

grid cells. The most common grid representations are rectangular or
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triangular. This discretization can lead to a loss of accuracy, but this

issue is overcome by chosing an appropiate cell size. Every cell of the

space is a node of a graph, and it is connected with its neighbours (4

or 8-connectivity in 2D, depending on the algorithm) and the cost of

travelling from one node to other can be set on many different ways.

Once the costs are set, graph search algorithms can be applied in or-

der to choose the path which allows to reach the goal point with the

minimum possible cost.

Within this group, we can find the typical graph search algorithms,

such Dijkstra (Dijkstra, 1959) or A* (Hart, Nilsson, & Raphael, 1968).

Artificial potential fields can be included in this group. Although

their mathematical model is continuous (Barranquand, Langlois, &

Latombe, 1992) they use to represent the space by means of grid cells.

In these algorithms, the robot is treated as an electric charge moving

under a potential field in which the obstacles have the same charge,

so they repeal the robot from them. The goal point has the opposite

charge, attracting the robot towards it. The main drawback of this

approach is that it is prone to local minima and oscillations.

Finally, the Fast Marching Method (Sethian, 1999) in which we focus

in this thesis (see chapter 3), lies also in this group. In this case, the

cost for each node is related with the time a propagating wave takes

to reach that node.

– Combinatorial methods: LaValle (in a recent classification (LaValle,

2011)) defines this group as those set of algorithms which constructs

structures which capture all the information needed in path planning

(Berg, Kreveld, Overmars, & Schwarzkopf, 2008),(LaValle, 2006). The

most widespread methods within this group are those based on road

maps, which mainly consist in obtaining precalculated short paths

from the map (road map) and create the path by taking the needed
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sections of the road map.

– Sampling-based methods: this type of algorithms incrementally searches

in the space for a solution using a collision detection algorithm (LaValle,

2006). The most extended algorithms of this group are those based on

rapidly exploring random trees (RRTs) (Kuffner & LaValle, 2000). The

branches of these trees are randomly created from the initial point of

the trajectory. RRT is a very fast planning method and one of the most

widely used nowadays.

The main problem of these two last goups is their stochasticity. Most

of the times the computed paths are far from the optimal one, are not

safe or not smooth. However, there are many different approaches

which modify these methods in order to make them more useful.

Figure 2.1 summarizes this classification. It is important to remark that this

classification is not unique. Moreover, the classification aforementioned is not a

common one. However, it has been built from an implementation point of view.

For instance, potential fields or Fast Marching-based methods are not usually

included in graph-based methods. Their mathematical models are different but

they rely on the same (or very similar) environment representation.

Figure 2.1: Classification of the current path planning approaches.

In the next sections the state of the art of path planning research is summa-

rized.
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2.2 Latest trends in path planning research

Many researchers consider that the path planning problem as a solved one.

However, most (if not all) current approaches perform poorly when they are

applied to more complex path planning problems. Current research efforts fo-

cus on more realistic environment representations and reformulating the path

planning problem in order to get it closer to the real problem robots have to face

when working among humans.

Concretely, during the recent years researchers have focused on path plan-

ning in dynamic environments with high uncertainty, due sensor noise or also

due a movement of other agents in the surroundings of the robot or crowdy

places. Also, navigation in large environments, in which all the obstacles are not

modelled.

For instance, in dynamic, uncertain environments (DUEs), robots must work

in close proximity with many other moving agents, whose future actions and

reactions are difficult to predict accurately. Robot motion planning in dynamic

environments has recently received substantial attention because of the Defense

Advanced Research Project Agency (DARPA) Urban Challenge (DARPA, 2011)

and growing interest in service and assistive robots (see, e.g., (Tadokoro, Hayashi,

Manabe, Nakami, & Takamori, 1995) and (Roy, Gordon, & Thrun, 2003)). In

urban environments, traffic rules define the expected behaviors of the dynamic

agents and constrain expected future locations of moving objects. In other appli-

cations, agent behaviors are less well defined, and the prediction of their future

trajectories is more uncertain.

When the future locations of moving agents are known, the two common ap-

proaches are to add a time dimension to the configuration space, or to separate

the spatial and temporal planning problems (LaValle, 2006). When the future lo-

cations are unknown, the planning problem is solved locally (via reactive plan-

ners) (Fiorini & Shiller, 1998), (Choset et al., 2007) or in conjunction with a global

planner that guides the robot toward a goal (Xu, Stilwell, & Kurdila, 2010). The



8 The State of the Art in Robot Path Planning

work (Du Toit & Burdick, 2012) presents an initial approach to a general frame-

work that integrates planning, prediction an estimation, incorporating as well

the effect of anticipated future measurements in the motion planning process.

Another important problem which still remains open are those systems with

high dimensional configuration spaces. These approaches are usually based

on RRT, with smoothing steps (Ettlin & Bleuler, 2006), (Karaman & Frazzoli,

2011). Most of these approaches are just modifications of the RRT basic algo-

rithm to apply it to specific cases: Transition-based RRT (T-RRT) (Jaillet, Cortés,

& Siméon, 2010) which includes a state transitions cost, Manhattan-like RRT

(ML-RRT) (Cortes, Jaillet, & Siméon, 2008) which incorporates a mix of active

and passive parameters, or MLT-RRT (Iehl, Cortés, & Siméon, 2012) which is a

combination of the aforementioned. Other approaches simply focus on dealing

with much higher dimensionality, but under very specific contexts (Shkolnik &

Tedrake, 2009).

Finally, other interesting problems have to be faced, such path planning

for multisection continuum arms (Godage, Branson, Guglielmino, & Caldwell,

2012) or maximum planning coverage minimizing energy (Michel & McIsaac,

2012).

In spite of the huge literature, it turns out that most of the path planning

efforts over the last years focused on solving very specific tasks or creating new

robot configurations and solving them as well. We, as path planning researchers,

consider that there is a lack of a general planning framework, being this the main

objective of this thesis and our work. The Fast Marching Square algorithm de-

scribed in chapter 3 is a good approach to a general framework, because it can

be applied easily to several complex problems wihtout including deep modifi-

cations.

In the following sections we include a brief state of the art of the different

problems that are faced in this thesis.
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2.2.1 Multi-robot systems: state of the art

The case of the multi-robot systems is very similar to the path planning: it

has been investigated during many years and researchers are moving to more

complex problems. Motion planning for multi-robot systems is considered well

solved, so the research efforts are being focused in aerial formations (A. Yang,

Naeem, Irwin, & Li, 2012), (Turpin, Michael, & Kumar, 2012), autonomous un-

derwater vehicles (Zhou, Jian, Wen-Xia, & Jin-Ping, 2012), formations with change-

able shape (Sanhoury, Amin, & Husain, 2012) or for specific robots or naviga-

tion conditions (Sadowska, Kostic, Wouw, Huijberts, & Nijmeijer, 2012), (Tian &

Sarkar, 2012).

Among all the possible multi-robot systems (coordination and cooperation,

multi-sensor fusion, task allocation, etc (Cai & Yang, 2012)) we focus on the for-

mation control problem, which can be considered as a coordination scheme for

the positions and orientations of the member of the formation.

So far, different approaches have been proposed to solve the robot forma-

tion control problem. Beard et al (Beard, Lawton, & Hadaegh, 2001) classify the

different approaches in three main groups: leader-followers, where one robot is

the leader and the rest are followers. The leader motion can be determined by

a calculated trajectory or by teleoperation; and the followers’ motion is deter-

mined by tracking the leader with some geometrical restrictions. This motion

can change dynamically over time, if necessary (Tanner, 2004). These leaders

can be real robots or, as proposed in (Leonard & Fiorelli, 2001), virtual leaders.

The second proposed group is behavioral, where several behaviors are weighted

in order to give a motion plan to each vehicle (Balch & Arkin, 1998). The third

group is virtual structure, where the entire formation is treated as a single struc-

ture, and its desired motion is translated into the desired motion of each vehicle

(Egerstedt & Hu, 2001).

Many other works have been carried out, such as using virtual potential
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fields to influence the location of each robot during movement in simple for-

mations (Garrido, Moreno, & Lima, 2011) or in very populated groups (Leonard

& Fiorelli, 2001). Other techniques are based on those virtual potentials, such

as the inclusion of springs and dampers (Urcola & Montano, 2009), (MacArthur

& Crane, 2007) to create virtual forces that are transformed into velocity com-

mands.

Another criterion for classification is the rigidity of the formation geometry.

Two large groups can be distinguished: rigid formations, where the geometry is

fully specified and the motion control of each robot ensures that this geometry

is accurately achieved (Das et al., 2002). These approaches require a method

to switch between geometries when the environment demands it (Fierro, Song,

Das, & Kumar, 2002). In dynamic formations, the geometric structure is can be

distorted in the presence of obstacles and environmental conditions (Ogren,

Fiorelli, & Leonard, 2003).

The chapter 4 is an important improvement over the work done in (Garrido

et al., 2011), reducing the computational time of the approach and also dealing

with uncertainty in the robots and obstacles positions.

2.2.2 Motion learning algorithms: state of the art

Many different approaches have been proposed to implement the robot learn-

ing. One approach has been to use the concept of motion primitives (Schaal,

Peters, Nakanishi, & Ijspeert, 2003). The Dynamic Movement Primitives (DMP)

are a set of nonlinear differential equations which creates smooth control poli-

cies. These primitives are learned by means of imitation learning and reinforce-

ment learning. A more recent approach based on the motion primitives idea is

proposed in (Lee & Ott, 2010), where the primitives learning is carried out using

incremental kinesthetic teaching by means of Hidden Markov Models (HMM).

Other approach is to show the robot how to perform a discrete motion (i.e.

point-to-point trajectories) (Khansari-Zadeh & Billard, 2011), where the robot
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performs a movement keeping the motion as similar as possible to the demon-

strations. Calinon goes a step further and it is proposed a control strategy for a

robotic manipulator operating in unstructured environments while interacting

with human operators (Calinon, Sardellitti, & Caldwell, 2010). Such situations

are starting to be common in manufacturing.

Lastly, a different, very interesting approach is given in (Abbeel & Ng, 2004).

In this case apprenticeship learning is carried out by supposing a Markov de-

cision process where the reward function is not explicitly given. By observing

an expert developing a task, this algorithm guesses that the expert is maximiz-

ing an unknown reward function, expressible as a linear combination of known

features.

All the mentioned methods are a few examples of the wide literature about

robot learning. All of them have proved a good performance within their objec-

tives, but their underlying mathematical model is usually based on probabilistic

terms, causing the learning to be stochastic and even unstable under certain con-

ditions. Besides, these approaches are not able to take into account environment

conditions, since their are based on modifying motion control parameters.

However, in (Berenson, Abbeel, & Goldberg, 2012) a different approach is

proposed. Here, two modules run in parallel: one planning from scratch and

other retrieving and repairing paths stored in a path library with the aim of re-

ducing computation time when planning in high-dimensional spaces. In (Melchior

& Simmons, 2012) another approach to learning motion trajectories for robotic

manipulator tasks is introduced. A graph is constructed to determine corre-

spondences between multiple imperfect demonstrations. Then the robot learner

plans novel trajectories that safely and smoothly generalize the teacher’s behav-

ior, while attenuating those imperfections. These approaches are close in con-

cept to the ones proposed in chapters 5 and 6, but the underlying mathematical

model and solution are very different.
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2.3 Fast Marching Methods in path planning: previous

work

The application of the Fast Marching Method in path planning is not novel but

recent. At the beginning, the Fast Marching Method was used to find paths

within the Voronoi diagram (Garrido, Moreno, Abderrahim, & Martin, 2006).

Later, Fast Marching was combined with the Extended Voronoi Transform (EVT)

in what they called Voronoi Fast Marching (VFM) (Garrido, Moreno, Blanco, &

Muñoz, 2007). This approach has been applied to exploration of cluttered envi-

ronments (Garrido, Moreno, & Blanco, 2008) and to robot formations (Garrido

et al., 2011). An improvement of the VFM was the Fast Marching Square (FM2)

planning method (Garrido, Moreno, Abderrahim, & Blanco, 2009).

The VFM and FM2 have been applied to other planning problems such as:

smooth planning for non-holonomoic robots (Garrido, Moreno, Blanco, & Mar-

tin, 2009), simultaneous robot localization and mapping (Garrido, Moreno, &

Blanco, 2009), planning in outdoor environments (Malfaz, Garrido, & Blanco,

2012), (Sanctis, 2010), RRT path smoothing (Jurewicz, 2010), or tube skeletons

(Garrido, 2008) among others.



Chapter 3
Fast Marching Square Planning

Method

Among all the different path planning algorithms, this document focuses on the

Fast Marching Square method, FM2 (Garrido, Moreno, Abderrahim, & Blanco,

2009).

This method is based on creating artificial potential fields from the sampled

information through sensors and obtaining the path from these fields. The Fast

Marching Method can be applied to create the potential fields and to obtain arti-

ficial local minima free fields, thereby solving one of the most important drawbacks

of these path planning methods.

Although FM2 is based on the creation of artificial potential fields, we con-

sider that this method should not be labeled as a potential-based method. These

algorithms have a mathematical formulation very different to FM2: they mainly

consist on putting together two different potentials: an attractive one and a re-

pulsive one. The robot then is considered as a particle moving under the influ-

ence of these potentials. However, this potentials mixture usually lead to local

minima.

On the other hand, FM2 includes the concept of time in the potential creation
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process. The robot in this case is considered as a particle moving under the

influence of time, choosing those paths which can be undertaken in the shortest

possible time.

Along this chapter the FM2 method is detailed. Next section first explains

the Fast Marching Method since it is the base for FM2. Then, in section 3.2 the

FM2 is presented.

3.1 Fast Marching Method (FMM)

The Fast Marching Method (FMM) is a particular case of Level Set Methods,

initially developed by Osher and Sethian (Osher & Sethian, 1988). It is an ef-

ficient computational numerical algorithm for tracking and modeling the mo-

tion of a physical wave interface (front), denoted Γ. This method has been ap-

plied to different research fields including computer graphics, medical imag-

ing,computational fluid dynamics, image processing, computation of trajecto-

ries, etc.(Jbabdi et al., 2008; Li, Xue, Cui, & Wong, 2011; K. Yang, Li, Liu, & Jiang,

2010).

3.1.1 Intuitive introduction to the Fast Marching Method

The FMM can be understood intuitively considering the expansion of a wave. If

a stone is thrown into a pond, a wavefront is originated, and this wave expands

with a circle shape around the point where the stone fell. In this example the

fluid is always water, thus the wave expansion velocity is always the same, and

that is why the wavefront is circular. Instead, if we repeat this experiment mix-

ing water and oil, we would observe that the wave expands at different speeds

in each medium. As a consequence, the wavefront will not be circular any more.

If we consider another point on the fluid (a target point), the wavefront will ar-

rive to that point after a certain time. The path that the wavefront has followed

from the origin to the target point will be the shortest path (in terms of time),
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considering that the traveling speed along the path is the expansion velocity of

the wavefront (which differs depending on the fluid).

In the FMM, the wavefront is called the interface. The interface can be a flat

curve in 2D, or a surface in 3D (but the mathematical model can be generalized

to n dimensions). The FMM calculates the time T that a wave needs to reach

every point of the space. The wave can be originated from more than one point,

each source point originates one wave. Source points have an associated time

T = 0.

In the context of the FMM we assume that the front Γ evolves by motion

in the normal direction. The speed, denoted F , does not have to be the same

everywhere, but it is always non-negative. At a given point, the motion of the

front is described by the equation known as the Eikonal equation (as given by

Osher and Sethian (Osher & Sethian, 1988)):

1 = F (x)|∇T (x)|

where x is the position, F (x) the expansion speed of the wave at that position,

and T (x) the time that the wave interface requires to reach x.

The magnitude of the gradient of the arrival function T (x) is inversely pro-

portional to the velocity:

1

F (x)
= |∇T (x)|

The T (x) function originated by a wave that grows from one single point

presents only a global minima at the source and no local minima. AsF (x) ≥ 0 ∀x
the wave only grows (expansion), and hence, points farther from the source

have greater T . A local minima would imply that a point has a T value lesser

than a neighbour point which is nearer to the source. This is impossible as this

neighbour must have been reached by the wave sooner.

In the next subsection the full mathematical model of the FMM is given.
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3.1.2 Mathematical formulation of the Fast Marching Method

The starting point is the Eikonal equation:

1

F (x)
= |∇T (x)|

Because the front can only expand (F (x) ≥ 0∀x), the arrival time T (x) is

single valued. Sethian proposed a discrete solution for the Eikonal equation

(Sethian, 1996). In 2D the area is discretized using a grid map. We denote i, j

the row i and column j of the grid map, that corresponds to a point p(xi, yj) in

the real world. The discretization of the gradient ∇T (x) according to (Osher &

Sethian, 1988)) drives to the following equation:

max(D−xij T, 0)2+min(D+x
ij T, 0)2+max(D−yij T, 0)2+min(D+y

ij T, 0)2 =
1

F 2
ij

(3.1)

or to the one proposed by Sethian (Sethian, 1996), simpler but less accurate:

max(D−xij T,−D
+x
ij , 0)2 +max(D−yij T,−D

+y
ij , 0)2 =

1

F 2
ij

(3.2)

where:

D−xij =
Ti,j−Ti−1,j

4x

D+x
ij =

Ti+1,j−Ti,j

4x

D−yij =
Ti,j−Ti,j−1

4y

D+1
ij =

Ti,j+1−Ti,j

4y

(3.3)

and 4x and 4y are the grid spacing in the x and y directions. Substituting Eq.

3.3 in Eq. 3.2 and letting

T = Ti,j

T1 = min(Ti−1,j , Ti+1,j)

T2 = min(Ti,j−1, Ti,j+1)

(3.4)

we can rewrite the Eikonal Equation, for a discrete 2D space as:
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max

(
T − T1

4x
, 0

)2

+max

(
T − T2

4y
, 0

)2

=
1

F 2
i,j

(3.5)

As we are assuming that the speed of the front is positive (F > 0) T must be

greater than T1 and T2 whenever the front wave has not already passed over the

coordinates i, j. Consequently Eq. 3.5 can be solved as the following quadratic:

(
T − T1

4x

)2

+

(
T − T2

4y

)2

=
1

F 2
i,j

(3.6)

Whenever T > T1 and T > T2 (we always take the greater value of T when

solving Eq. 3.6). If T < T1 or T < T2, from Eq. 3.5 the corresponding member is

0 (max
(
T−T1
4x , 0

)
), and hence Eq. 3.5 is reduced to:

(
T − T1

4x

)
=

1

Fi,j
(3.7)

if T resulted to be smaller than T1 when solving 3.6, or

(
T − T2

4y

)
=

1

Fi,j
(3.8)

if T resulted to be smaller than T2 when solving 3.6.

3.1.3 Implementation details of the Fast Marching Method

Eq. 3.5 can be solved iteratively over a grid map. For doing so, the cells of the

grid map must be labeled of one of the following types:

• Unknown: Cells whose T value is not known yet (the wave front has not

reached the cell).

• Narrow Band: Candidate cells to be part of the front wave in the next itera-

tion. They are assigned a T value that can still change in future iterations

of the algorithm.

• Frozen: Cells that have already been passed over by the wave and hence

their T value is fixed.
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The algorithm has three stages: initialization, main loop, and finalization.

Initialization The algorithm starts by setting T = 0 in the cell or cells that

originate the wave. These cells are labeled as frozen. Afterwards it labels all

their Manhattan neighbors as narrow band, computing T (Eq. 3.5) for each of

them.

Main loop In each iteration the algorithm will solve the Eikonal Equation (Eq.

3.5) for the Manhattan neighbors (that are not yet frozen) of the narrow band

cell with the lesser T value. This cell is then labeled as frozen. The narrow band

maintains an ordered list of its cells. Cells are ordered by increasing T value

(first cells have lesser T values).

Finalization When all the cells are frozen (the narrow band is empty) the algo-

rithm finishes.

We can see the process in Figures 3.1 and 3.2. In Figure 3.1 the wave is origi-

nated from one point. In 3.2 there are two wave sources. Black points are frozen,

and their T value will not change. Gray points are the narrow band, while white

ones are unknown. As it can be appreciated the waves grow concentric to the

source. In Figure 3.2 they join, and the waves develop themselves growing to-

gether. The iterative process expands cells in the same order that the physical

wave grows, as cells with less T are expanded first, that is, if two cells have a dif-

ferent arrival time, the cell that is reached before by the front wave is expanded

first.

If we consider T as the third dimension over the z axis, the result of com-

pleting the wave expansion of Figures 3.1 and 3.2 results in Figure 3.3a and 3.3b

respectively. As it was supposed to happen, as F > 0, when we get far from the

sources the time T required to reach the point is greater (higher on the z axis). It

can be appreciated that with one single source, there is only one minima at the

source. With more than one source we have a minima at each source with T = 0.
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Wave source 
T(i0,j0)=0

Frozen cells i,j 
with T(i,j) > 0   

Unknown cells Narrow band cells

Iteration 1 Iteration 5 Iteration 13 Iteration 21 Iteration 25

Figure 3.1: Iterations of the FMM in a 5x5 grid map with one wave source.

Wave source, T=0

Frozen cells i,j with T(i,j) >  0   

Unknown cells

Narrow band cells

Iteration 2 Iteration 10 Iteration 25  

Iteration 39 Iteration 45

Figure 3.2: Iterations of the FMM in a 5x9 grid map with two wave sources.

Finally, the pseudo-code of the FMM is shown in the Algorithm 1.

3.1.4 Application of Fast Marching Method to path planning

Let us consider a binary grid map, in which obstacles are valued as 0, and free

space as 1. These values can be taken as the wave expansion speed F over

the grid map. At obstacles, wave expansion speed is 0, as the wave cannot go

through obstacles, and on free space, wave expansion speed is constant and

equals to 1. If we want to compute the path between two points p0 and p1 we

could expand a wave from p1 until it reaches p0. Due to the wave expansion

properties, the path that has followed the wave interface from the target to the
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input : A grid map G of size m× n
input : The set of cells Ori where the wave is originated
output: The grid map G with the T value set for all cells

Initialization;
foreach gij ∈ Ori do

gij .T ← 0;
gij .state← FROZEN;
foreach gkl ∈ gij .neighbours do

if gkl = FROZEN then skip; else
gkl.T ← solveEikonal(gkl);
if gkl.state = NARROW BAND then
narrow_band.update_position(g_kl);
if gkl.state = UNKNOWN then

gkl.state← NARROW BAND;
narrow_band.insert_in_position(gkl);

end
end

end

Iterations;
while narrow_band NOT EMPTY do

gij ← narrow_band.pop_first();
foreach gkl ∈ gij .neighbours do

if gkl = FROZEN then skip; else
gkl.T ← solveEikonal(gkl);
if gkl.state = NARROW BAND then
narrow_band.update_position(g_kl);
if gkl.state = UNKNOWN then

gkl.state← NARROW BAND;
narrow_band.insert_in_position(gkl);

end
end

end
end

end

Algorithm 1: FMM algorithm
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(a) One wave source (b) Two wave sources

Figure 3.3: FMM applied over a grid map. The arrival time is shown in the z axis.

source point will be always the shortest trajectory in time. As the wave expan-

sion speed is constant, this trajectory is also the shortest solution in distance.

The wave is originated from the target point, hence, the computed T (x) field

will have only one minima at the target point. Hence, following the maximum

gradient direction from the initial point we will reach the target point, obtaining

the trajectory. This solution is unique and complete.

Figure 3.4 shows an example. We want to trace the shortest path from a start

point to a goal point. First, we have the binary map (obtained through a 3D

laser range sensor). For security reasons, the obstacles of this map (labeled as 0,

black points) are dilated by the maximum radius of the robot. Then, the FMM is

applied using the goal point as a wave source. Once the interface Γ has reached

the start point the algorithm stops expanding.

The resulting grid map stores at any pixel the time T required by the front

wave to reach that pixel. The isocurves join together all the points that have

been passed through at the same instant of time. These curves are the trace of

the front wave. If we compute the maximum gradient direction at any point of

the grid map we obtain the normal direction to the isocurve, that is, the direction
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T

Figure 3.4: Steps of the FMM applied to path planning.

the curve has followed when expanding. The maximum gradient direction is

computed applying the Sobel operator over the grid map.

gradx =


−1 0 1

−2 0 2

−1 0 1

 ? L grady =


1 2 1

0 0 0

−1 −2 −1

 ? L (3.9)

For tracing the path between the initial and the goal points we just need to

follow the maximum gradient direction starting at the initial point. The path is

computed iteratively. gradix and gradiy are computed at every point pi. From

pi is computed pi+1 (equation 3.10) and successively until arriving to the goal

point. As this goal point is located at the global minima it is always reached

(whenever there is path).

modi =
√
grad2

ix + grad2
iy

alphai = arctan(
gradiy
gradix

)

p(i+1)x = pix +modi · cos(alphai)

p(i+1)y = piy +modi · sin(alphai)

(3.10)
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3.2 Fast Marching Square planning method (FM2)

The trajectories generated in the original work by Sethian (Sethian, 1996) (see

Figure3.4) on the FMM are optimal according to the minimal Euclidean distance

criterion, but it creates paths which run too close to obstacles and are not smooth.

These facts turn FMM into an unreliable path planner for most robotic applica-

tions. However, the FM2 algorithm solves these problems by obtaining a veloc-

ities map which modifies the wave expansion according to the distance of the

closest obstacle.

Let us take an evidence grid map in which obstacles are labeled as 0 and

free space as 1. We can apply the FMM to this map being all the obstacles a

wave source. In the previous section, there was just one wave source, at the

target point. Here all the obstacles are a source of the wave, and hence, several

waves are being expanded at the same time. The map resulting of applying

this wave expansion to the binary map depicted in Figure 3.4 can be seen in

the first subfigure of Figure 3.5. It represents a potential field of the original

map. As pixels get far from the obstacles, the computed T value is greater. This

map can be seen as a velocities map. If we consider the T value as a measure

proportional to the maximum allowed speed of the robot at each point, we can

appreciate that speeds are lower when the pixel is close to the obstacles, and

greater far from them. In fact, a robot whose speed at each point is given by the

T value will never collide, as T → 0 when approaching the obstacles. Making

an appropriate, relative scaling (between 0 and 1) of the values of this potential

to the robot allowed speeds, we have then the velocities map, that provides a

safe speed for the robot at any point of the environment. In Figure 3.6 we can

appreciate the speeds profile. In the image is clear that speeds become greater

far from the obstacles.

We could calculate now the path as we did in Section 3.1.4 but instead of

taking a constant value for the expansion speed F , we use the speed given by

the velocities map. Now, if we expand a wave from one point of the grid map,
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considering that the expansion speed F (x, y) = T (x, y), being F (x, y) the speed

at point x, y and T (x, y) the value of the velocities map at x, y, we will have that

the expansion speed depends on the position, and it is precisely the safe speed

given by the velocities map. As this map provides the maximum safe speed of

the robot, the obtained trajectory is the fastest path (in time) assuming the robot

moves at the maximum allowed speed at every point.

T

Figure 3.5: Steps of the FM2 applied to path planning.
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Figure 3.6: Velocity profile of the path shown in Figure 3.5



3.2 Fast Marching Square planning method (FM2) 25

The FM2 method is analogous to the Geometric Optics where light rays (tra-

jectory in FM2) travel in curved trajectories in media with changing refraction

index (velocities map). Therefore, time optimality is justified by the principle of

Fermat: Light travels the path which takes least time.

As a final remark, the FM2 does not require to dilate the obstacles, since it is

going to compute a very safe path for the robot. However, the binary map could

be dilated before computing the velocities map.

3.2.1 Saturated variation of the Fast Marching Square Method

In most scenarios the trajectories provided by FM2 are not logical nor optimal,

even though the quality of the trajectory in terms of smoothness and safety is al-

ways good. The FM2 computed trajectory, as it has been presented, tries to keep

the trajectory as far as possible from obstacles. This computed trajectory is sim-

ilar to the path computed with the Voronoi diagram (Siegwart & Nourbakhsh,

2004). But there are environments in which there is no need to follow a trajectory

so far away from obstacles, as distance may be safe enough to navigate. To solve

this a saturated variation of the velocities map can be used. When the first FMM

has been computed, the velocities map is first scaled, to have continuous values

between 0 and 1, and then saturated.

The scaling of the map is made according to two configuration parameters:

• Maximum allowed speed, which is the maximum control speed the robot

may receive.

• Safe distance, which is the distance from the closest obstacle at which the

maximum speed can be reached.

At the end the map is saturated to the maximum allowed speed. After this

scaling and saturation process the velocities map provides the maximum speed

for all the points that are farther than the safe distance from the obstacles and
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the control speed varying form 0 (at obstacles) to the maximum speed (at safe

distance) for the rest of points.

Figure 3.7 shows the saturated variation of Figure 3.5 with the new com-

puted trajectory. We can appreciate that now the path is closer than a human

could expect.
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(a) Saturation level: 0.3

(b) Saturation level: 0.6

Figure 3.7: Results of the saturated version of FM2 for different saturation levels.
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In Figure 3.8 the speed profile with the saturated area is shown.
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(a) Saturation level: 0.3
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(b) Saturation level: 0.6

Figure 3.8: Velocity profiles of the paths shown in Figure 3.7

3.3 Conclusions

In this chapter we have presented the mathematical foundations of the FMM.

We have presented the algorithm that we have implemented to apply the FMM

over a grid map. Section 3.1.4 presents how the FMM method can be applied to

compute the trajectory among two points in a grid map.

The limitations of this methodology lay in the fact that it provides the short-

est path in distance, which leads to risk due to its closeness to the obstacles. In

Section 3.2 the FM2 has been explained in detail. The FM2 computes two wave
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expansions over the grid map. The first expansion computes the velocities map

that provides the maximum allowed speed of the robot at each point of the map.

This velocities map is used to compute the second expansion, form the target

point to the initial point. As a result of the second expansion, the trajectory is

computed (using the maximum gradient direction). This solution provides both

a path (way point) and the control speed at each point. As a result, this trajec-

tory is safe and optimal in time. The FM2 computes paths that tend to navigate

far from obstacles, but this situation is not always necessary.

Initially, the FM2 method can be understood as just another path planning

method. However, as shown in the next chapters, this method is highly versa-

tile, being possible to integrate it into more complex problems based on path

planning, such as robot formations path planning, trajectory learning and so on.





Chapter 4
Robot Formation Path Planning

based on the FM2 Method

4.1 Introduction to robot formation motion planning prob-

lem

Due to their wide range of applications (surveillance, cooperative mapping, etc),

robot formations have become one of the most insteresting topics in robotics

research. Although a single robot is currently able to perform very complex

tasks on its own, some of these tasks can be performed in a more efficient way

using a group of robots.

The final objective in robot formation path planning is to find the paths and

poses (positions and orientations) for each robot of the formation, taking into ac-

count the characteristics of the environment, the others robots in the formation,

and the final objective. Therefore, the robot formation should be able to move

throughout the scenario adapting the shape of the formation to their needs.

One of the main difficulties is that the position of the robots or obstacles is

not totally accurate. This uncertainty becomes dangerous when the formation
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must navigate through narrow passages, sharp curves or in harsh environmen-

tal conditions. In these situations, robots could crash into each other.

This chapter is organized as follows. Section 4.2 details the basic algorithm

to solve the robot formation path planning based on FM2. In section 4.3 the

basic algorithm is improved, decreasing computation time and including uncer-

tainty. Finally, in section 4.4 an outline of the application to 3 dimensions of the

proposed method is included.

4.2 Basic robot formation planning algorithm using FM2

In this chapter, the leader-followers scheme is used for robot formation path

planning. The pose reference for the follower robots are defined by geometric

equations, placing the goal point of each follower as a function of the leader’s

pose. The leader can be a robot, another vehicle, a person or even a virtual leader,

which is a hand-defined point, usually by geometric relations.

The algorithm described next is an adaptation of the one proposed in (Garrido

et al., 2011) to the FM2 path planner method. This change is motivated by the

fact that FM2 is an improvement of the VFM planning method. Hence, the robot

formation path planning is based on a state-of-the-art algorithm. There also ex-

ist two other advantages to using FM2: it is easier to implement than VFM and it

provides a continuous velocities map, whilst the VFM provides a velocities map

with discrete gray level.

The FM2 method provides a two-level artificial potential which repels the

robot from the walls and obstacles. On the other hand, robot formation motion

control requires additional repulsive forces between robots. Working only with

the artificial repulsive potential given by the FM2, the robots of the formation

could crash into each other. Thus, integrating the potential given by FM2 and

the repulsive force between robots, each robot has at each moment one single

potential attracting it into the objective but repelling it from obstacles, walls and

other robots. The main requirement when integrating all the potentials is to do
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it in a way that does not create local minima.

The FM2 uses a two-step potential to compute the path: the first step creates

a potential which can interpreted be as a velocities potential, which we denoted

asW (x); and the second step creates a funnel shaped potential, which represents

the distance to the goal in the metrics W (x) and is denoted as D(x).

The robot formation path planning algorithm using FM2 is the following:

• The environment map W0 is read as a binary map, where 0 (black) means

obstacles or walls and 1 (white) means free space. This map is common for

all the robots in the formation (both leaders and followers).

• The first potential W is calculated applying the FMM to the binary map

W0, according to the FMM 1st step of the FM2 method (section 3.2).

• The second potential D is calculated applying the FMM on the potential

W.

• An initial path for the leader is calculated applying gradient descent on

the potential D, according to the FM2 method.

• So far the algorithm described is the application of FM2 to the leader of the

formation. Then a loop begins in which each cycle represents a step of the

robots’ movement. This loop consists of:

1. For each cycle t, each robot i (both leader and followers) includes in

its binary map Wt
0i the other robots in the positions (xj , yj)∀j 6= i (in

2D case) as black points, representing obstacles.

2. For each cycle t, each robot i generates a new first potential Wt
i from

Wt
0i.

3. From the leader’s pose and the desired formation geometry, the par-

tial goal (xgk, ygk) is calculated for each follower k (where k repre-

sents all the followers of the formation). The shape of the formation
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is deformed proportionally to the grey level of the partial goal’s posi-

tion. Thus, the formation is adapted to the environment moving far-

ther from obstacles and walls and also avoiding collisions with other

robots (which are treated as obstacles). This way, the repulsive force

between robots and walls and also the repulsive force between robots

are implemented. The initial geometry of the formation and how it is

affected by the environment is shown in Figure 4.1.

4. The potentials Dt
i are calculated applying the FMM to the metrics

matrices Wt
i . For the leader the goal point is the end point of the

path. The goals of the followers are the partial goals computed on the

previous step. The low computational cost of FM2 allows us to do

this without compromising the refresh rate.

5. The path is calculated for each robot i. This path is the one with the

minimum distance with the metrics Wt
i and it is obtained applying

gradient descent on the potential Dt
i.

6. All the robots move forward following their paths until a new itera-

tion is completed.

The aforementioned algorithm is summarized in the flowchart of Figure 4.2.

It is a base which assures the correct navigation of a robot formation through

different environments, avoiding obstacles and adapting to narrow passages.

In (Garrido et al., 2011) many additional techniques are proposed to improve

the time or behaviour performance of the algorithm. These techniques such

as maximum energy configuration, using a tube around the path to decrease

the computational cost, or adding springs can be applied to this algorithm with

very similar results. In addition, this algorithm can be applied to any kind of

robot formation, with real or virtual leaders. Figure 4.3 shows the steps of the

algorithm on a triangle-shaped robot formation. This shape has been chosen

because it is easier to analyse the behaviour of the followers. In the Figure 4.4

the complete sequence of movement is shown.
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Figure 4.1: Top left - Main components of the robot formation algorithm. Top right - Reference
geometric definition of a simple, triangle-shaped robot formation. Bottom left - Behaviour of
the partial goals depending on the leader’s pose. Bottom right - Behaviour of the partial goals
depending on the obstacles of the environment.
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(g) Reference velocities for each robot of the formation.

Figure 4.3: a) Snapshot of the formation moving. The leader follows the blue path. The green
triangle (leader-partial goals) is the desired formation and the red triangle (leader-followers) is
the current formation.
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Figure 4.4: Sequence of movement of a robot formation with the basic path planning algorithm,
simulated in a map of our laboratory obtained with SLAM techniques.
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4.3 Inclusion of uncertainty on the basic algorithm

In the previous work the obstacles were included in the initial binary map. Here

the obstacles and the other robots of the formation are included in the velocities

map, allowing to easily include a degree of uncertainty in the position of the

obstacles and robots. This modification also improves enormously the compu-

tational cost of the algorithm, since the velocities map is not calculated once for

every robot and every iteration.

In the implementation phase, there are two approaches that can be used.

The first one is decentralized control. This is based on using completely au-

tonomous robots, which detect the environment and obstacles with their sen-

sors, compute their localization and communicate their positions to all the other

members of the formation. This requires a complex communication protocol and

the uncertainties are high. On the other hand is centralized control, where one

main computer receives all the information through sensors and communicates

the decisions directly to the robots. In this case, the sensors could be a camera

above the robots or a motion capture system. The uncertainties of this approach

are usually lower and its implementation is easier. Although both approaches

are suitable for our proposed algorithm, we think it is easier to demonstrate by

means of the second approach. An example of a low-cost, easy implementation

is shown in Figure 4.5. Of course, these strategies are not error-free and have an

uncertainty associated due to sensor noise and measurement errors.

In the proposed method, each robot i of the formation has its own first poten-

tial Wt
i depending on time. This potential is defined by the global first potential

W (defined by the map) in which an uncertainty function is included for each

robot of the formation.

Let us suppose that robot i of the formation is in the position (xi, yi). This

position has an error, since it has been calculated using sensor information. With

the dimensions of the robots known, namely li×wi, the robot j takes into account

the position of robot i and its uncertainty as follows:
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Figure 4.5: Example of a system which is able to capture the position and orientation of the
robots by using a camera and colour labels on the robots.
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• A map is created in which all is a gray space with uniform value 0 ≤
α ≤ 1, where α means the uncertainty level (1: totally uncertain, 0: no

uncertainty).

• In the middle of this map a zone with value 0 is included. The size of

this zone is equal to the dimensions li × wi, representing the robot on the

measured position.

• The FMM is applied to this map using the position of robot i as the ori-

gin. Thus, a gray scale map is generated where the highest values de-

pends on the size of the map and the uncertainty. The minimum between

the gray scale map and 1 is calculated in order to set the maximum value

(white). Then, this map can be interpreted as a uncertainty function Wri

where white (1) means that it is quite certain that robot i is not in those

points, and black (0) means that robot i is certain to be in those points. The

uncertainty function should not depend on the time, since this uncertainty

appears because of the sensor noise and it is supposed to maintain itself in

the same range of values.

• Calculate the minimum between the first potential Wt
j of robot j and the

uncertainty function Wri. Thus, Wt
j is updated with the position of robot

i with the uncertainty included.

Wt
j = min(Wt

j ,Wri) (4.1)

In the initialization, the first potential for the robot is equal to the global

first potential, Wt
j = W.

• For the robot j, this process is repeated for all the other robots i in the

formation. At the end, the first potential Wt
j will include an uncertainty

function for every other robot in the formation.
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This algorithm can be integrated into the one described in section 4.2 by includ-

ing it in place of steps 1 and 2 of the loop.

With this method, summarized in Figure 4.6, one robot in the formation

(leader or follower) is able to calculate the path to its objective taking into ac-

count the global map and the other robots’ position with its uncertainty in-

cluded. This way, the robot will navigate far from places that are obstacle-free

but the velocity is slow, and it will also avoid places were the velocity could be

high but it is not possible to assure safety.

The steps of the algorithm and its details are shown in Figure 4.7. Full se-

quences of movements are shown in Figures 4.8, 4.9, 4.10, testing different robot

formation shapes.
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Figure 4.6: Flowchart of how the velocities map is modified for every robot in the formation.
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Figure 4.7: Steps of the formation planning method including uncertainty.
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Figure 4.8: Sequence of movement of a robot formation with the proposed path planning algo-
rithm.
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Figure 4.9: Sequence with a different formation. This time, 3 robots travels in a line.
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Figure 4.10: Sequence of movements of a robot formation composed of 4 robots.
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For n robots, the FMM must be applied n times (one per robot), which in-

creases the computational cost. To reduce this cost, the uncertainty function is

computed on a smaller map and is later added to a bigger map. In our simula-

tions, the map on which the uncertainty function is applied has a size of 10 times

the dimensions of the robots. Moreover, if all the robots of the formation are of

the same size, it is only necessary to compute the uncertainty function once and

later include it in all the positions needed, avoiding unnecessary computational

cost.

Comparing Figures 4.4 and 4.8, it is possible to see that the motion of the

formation is not highly modified. However, the inclusion of the other robots as

uncertainty functions in the velocities map has many advantages: in the basic

algorithm there were places in the velocities map which were far from the robots

but still influenced their movement. With the approach shown herein robots are

only taken into account within their uncertainty area, see Figure 4.11. Therefore,

the robots behave normally until they are in places were other robots could be.

The proposed approach allows dealing with uncertainty in a very intuitive way,

avoiding complex probabilistic modelling. Furthermore, in the basic algorithm

the velocities map had to be calculated in every loop cycle. This supposes an

average computation time of 1.5 ± 0.1 seconds in a 625 × 293 pixel map. With

the new approach the computation time of each iteration is 0.82 ± 0.03 seconds

for the same map.

4.3.1 Velocity saturation

In environments with large, open areas the FM2 can provide good trajectories

but they can be improved since in most situations it is not necessary to move

through the safest path but through one that is safe enough. For instance, in an

open room it may not be necessary to go through the middle of the room because

it is enough to keep a minimum distance from the walls. To solve this a satu-

rated variation of the velocities map W (x) has been implemented. This results
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Leader position First follower
position

Figure 4.11: Comparison of the velocities map created for the second follower with the basic
algorithm (top) and using uncertainty functions (bottom).
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in a maximum velocity in open areas which decreases when the robot is close

enough to the walls or obstacles. This has already been proposed in (Garrido,

Moreno, Abderrahim, & Blanco, 2009) for single robot motion, improving the

trajectories, which are closer to the optimal path in distance and making it more

human-like. Here, velocity saturation is applied to a robot formation, which al-

lows the geometry to have less deformation since the velocity is constant in most

points.

Figure 4.12 shows the underlying characteristics of this variation.

(a) Robot formation. (b) WT
leader .

 

 

0

0.5

1

1.5

2

2.5

3

(c) DT
leader .

0 10 20 30 40 50 60
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration number

Ve
lo

ci
ty

 o
f t

he
 ro

bo
t (

%
 o

f t
he

 m
ax

im
um

)

 

 

Leader

Follower 1

Follower 2

(d) Reference velocities for the robots

Figure 4.12: Steps of the robot formation algorithms with saturated velocities map.

A full sequence of movement is included in Figure 4.13. It should be noted
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that this modification will require faster and more agile robots, since the shape

is not deformed until any robot of the formation is close enough to an obstacle.

Thus, while the advantage of this variation is that the formation maintains its

predefined shape for a longer period of time. However, the drawback is that it

usually generates sharper curves. This version of the proposed algorithm does

not include any modification in the computation time for every iteration.

4.3.2 Mobile obstacles

The 50% reduction in computation time encourages a deeper study in dynamic

environments. In most robotic applications, there will be two types of obstacles:

static, such as walls; and dynamic, like people walking around, doors, etc. In a

real application, a robot formation must be able to change its path according to

the dynamic obstacles in the scenario.

Since the leader of the formation is recalculating its complete path in each

iteration, the path will always be collision-free for the leader. The followers

compute their path to the partial goals, so mobile obstacles do not represent a

problem for the followers until they are close to them. The obstacles can be de-

tected in many different ways: cameras, robot sensors, motion capture systems,

etc. As for the robots, when an obstacle is detected, its position (and also veloc-

ity) will be measured with an associated error due to sensors noise. It is possible

to deal with this uncertainty in the same way as done in section 4.3:

• The leader obtains a safe, collision-free path, avoiding obstacles which

could become a problem in the following steps.

• The position of the obstacle and its size have some degree of uncertainty.

Then, the algorithm in section 4.3 is used in order to take that uncertainty

into account: an uncertainty function is calculated for each mobile obsta-

cle, depending on its size and velocity. All the generated functions are

included in the velocities map of the robots.
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Figure 4.13: Sequence of movements of a robot formation using velocities map saturation.
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With this method a low computational cost is achieved when dealing with

dynamic obstacles, since the underlying algorithm is the same proposed in sec-

tion 4.3. The only modification is that the obstacles detected are included in the

first potential of all the formation robots. The inclusion of mobile obstacles is de-

tailed in Figure 4.14. A complete sequence of movement in a real laboratory, ob-

tained through a 360° field-of-view range scanner, is shown in Figure 4.15, where

velocity saturation was also applied. Predictive algorithms such as (Tao, Falout-

sos, Papadias., & Liu, 2004; Shen, 2009), can be used to predict those movements

and set the partial objectives accordingly.

Other methods to include uncertainty in mobile obstacles, based on multi-

dimensional Gaussian functions have already been proposed (Wang, 2009). The

main advantage of the proposed method is that using FM2 has a similar result

and it is easier to implement. Also, the way Gaussian functions can be merged

with the FM2 requires a deep study while the advantages are not remarkable in

comparison with the proposed method.

4.4 Formation planning algorithm in 3D

Since FMM and FM2 can be expanded to more than 2 dimensions, the algorithm

detailed in this chaper is also applicable to 3 dimensions.

However, a problem arises when dealing with the formation geometry in

3 dimensions. In the previous section, one of the references for the formation

geometry was the tangent vector of the leader’s trajectory. The rest of the refer-

ences were computed from this one: normal vector and combinations of normal

and tangent vectors (see Figure 4.1). If the same concept is applied in 3 dimen-

sions, it turns out that there exist a infinite number of perpendicular vectors to

the tangent to the trajectory, as can be seen in Figure 4.16. In fact, the perpendic-

ular of a given vector is a plane.

In order to adapt the proposed robot formation planning method to 3 di-

mensions, a third reference has to be defined so the reference geometry of the
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Mobile obstacle
and its path

Followers
and their
paths ppaths

Figure 4.14: Top - Velocities map of the leader at time T, WT
leader, with the followers and

obstacles included with their uncertainty function. Bottom - Current position of the formation
and the obstacle.
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Figure 4.15: Navigation sequence of a formation in a real environment. The trajectories of the
robots (red) and obstacles (pink) are included (the sharp trajectories of the followers are due to
simulation discretization).
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Figure 4.16: The red vector represents the tangent to the trajectory and the red circle the per-
pendicular plane to this vector.

formation can be defined. In our case, two different options are possible:

• Use an absolute reference, i.e., defining the normal vector as parallel (or

perpendicular) to the ground of the robot formation environment. The

main drawback of this approach is that the formation will be very rigid

and could not adapt well to the environment, creating strange formation

shapes in some situations.

• Use a relative reference, using the local characteristics of the path as a third

reference. It allows the formation to be more environment-independent when

defining the reference geometry.

In our case, we use a relative reference, based on the Frenet-Serret formulae

(Frenet, 1852; Serret, 1851).
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4.4.1 Frenet-Serret formulae

The Frenet-Serret formulae are used to describe the kinematic properties (ve-

locity, curvature and torsion) of a particle which moves in a three-dimensional

Euclidean space, R3. Let r(t) be a parametrization of a continuous, differen-

tiable curve C in a Euclidean space R3. Let us denote T(t), N(t) and B(t) the

unit tangent vector, unit normal vector and unit binormal vector respectively.

Let us denote also the curvature as κ(t) and the torsion as τ(t), the Frenet-Serret

formulae are:


T′(t) = κ(t)|r′(t)|N(t)

N′(t) = −κ(t)|r′(t)|T(t) + τ(t)|r′(t)|B(t)

B′(t) = −τ(t)|r′(t)|N(t)

(4.2)

The Frenet trihedron, Frenet-Serret frame or TNB frame, is defined by the

collection of the three vector functions T(t), N(t) and B(t) satisfying the follow-

ing fundamental relations:

T(t) = r′(t)
|r′(t)| N(t) = T′(t)

|T′(t)| B(t) = T(t)×N(t) (4.3)

The graphical representation of the Frenet trihedron is already shown in Fig-

ure 4.16, where the red vector is T(t), the blue vector is N(t) and the green vector

represents B(t).

4.4.2 Implementation considerations of the Frenet trihedron

Since the FMM provides continuous trajectories it is possible to use the Frenet

trihedron using as a curve C the path provided. However, due to the voxel grid

environment representation, the paths in the implemetation are not continuous.

If the grid size is small enough (this means that the path behaves as a continuous

curve with this grid size) the vector functions T(t), N(t) and B(t) can be approx-

imated by using numerical differentiation for every iteration i. Concretely, we
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will use the centered differences of order n, δnh [f ](x). Hence:

T(t) ‖ r′(t) (4.4)

satifying that |T(t)| = 1 (as exposed in equation 4.3). Therefore:

r′(t) ≈ δh[r](x) = r(t+ 1
2h)− r(t− 1

2h) =
r(ti+1)− r(ti−1)

2∆t
(4.5)

Normalizing to length 1:

r′(t)

|r′(t)|
≈

r(ti+1)−r(ti−1)
2∆t

|r(ti+1)−r(ti−1)
2∆t |

(4.6)

Assuming that the time intervals ∆t are equal among iterations, ti+1 − ti =

ti − ti−1, then:

r′(t)

|r′(t)|
≈

r(ti+1)−r(ti−1)
ti+1−ti−1

|r(ti+1)−r(ti−1)
ti+1−ti−1

|
(4.7)

As ti+1 > ti > ti−1:

r′(t)

|r′(t)|
≈ r(ti+1)− r(ti−1)

|r(ti+1)− r(ti−1)|
(4.8)

So, finally, T(t) is computed as follows:

T(t) =
r′(t)

|r′(t)|
≈ r(ti+1)− r(ti−1)

|r(ti+1)− r(ti−1)|
(4.9)

Similarly, for N(t):

N(t) ‖ T′(t) (4.10)

Subject to |N(t)| = 1. Consequently:

N(t) ‖ T′(t) ‖ r′′(t) (4.11)

Approximated by the second order centered difference:
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δ2
h[r](t)

h2
=

r(t+ h)− 2r(t) + r(t− h)

h2
=

r(ti+1)− 2r(ti) + r(ti−1)

(∆t)2
(4.12)

Following the same assumptions as before, and normalizing the lenght to 1, the

result is:

N(t) ≈ r(ti+1)− 2r(ti) + r(ti−1)

|r(ti+1)− 2r(ti) + r(ti−1)|
(4.13)

Summarizing, the formulae to compute the Frenet trihedron are:


T(t) ≈ r(ti+1)−r(ti−1)

|r(ti+1)−r(ti−1)|

N(t) ≈ r(ti+1)−2r(ti)+r(ti−1)
|r(ti+1)−2r(ti)+r(ti−1)|

B(t) = T(t)×N(t)

(4.14)

where the vector r(ti) is in our case a point of the path (xi, yi, zi).

4.4.3 Application of the Frenet trihedron to 3D robot formation path

planning

The advantage of using the Frenet trihedron is that among the infinite possible

vectors perpendicular to the tangent vector, one is chosen in the direction of the

curvature N (or normal acceleration). Furthermore, the direction of this vector

changes continuously which is an important property when applying this trihe-

dron as a reference for the geometry formation.

Then, by combining vectors T, N and B any shape can be given to the forma-

tion, as depicted in Figure 4.17. The deformation of the shape depending on the

obstacles of the environment is exactly the same as for the 2D method explained

along the chapter.

In Figure 4.18 a motion sequence is shown in order to prove the feasibility of

this method.
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Figure 4.17: Schema of the definition of the geometry in 3D based on the Frenet trihedron.

4.5 Conclusions and future work

All the graphs included, except Figure 4.5, correspond to Matlab® implemen-

tations of the proposed algorithm, applied to different cases. It is important to

note that the absolute times given for comparison are not representative, since

the algorithms implemented in real robots would run much faster. However, the

50% time reduction is very remarkable because this would apply also to a real

implementation. In the simulations, both the initial and the final points of the

trajectory are given, and the paths are calculated with the FM2 algorithm (both

the leader’s and followers’ paths). To calculate the partial goals of the followers,

a shape is previously set (e. g. a triangle, see Figure 4.1) defining the distances

from the followers to the leader and modifying those distances as a function of

the gray level of the current position.

The sequences shown in Figures 4.4, 4.8, 4.9, 4.10, 4.13 and 4.15 prove that the

algorithm behaves well even in complex, non-regular, cluttered environments.

It is also shown that many different formation shapes can be implemented, de-

pending on the requirements of the specific application. These simulations were

carried out in real scenarios acquired through sensors to show that the algorithm

is robust to the environment modelling noise and irregularities. Moreover, Fig-

ures 4.18 proves that the algorithm can easily extended to 3D dimensions.

All these tests show that the proposed method, in combination with the FM2
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path planner, is robust enough to manage autonomous movements through an

indoor environment, avoiding static and mobile obstacles successfully.

Moreover, the modifications to the algorithm to improve the behaviour of

the formation or decrease its computational cost proposed in our previous work

(Garrido et al., 2011) can also be applied in the method described here.

Results show that the proposed algorithm is able to manage uncertainties

successfully with lower complexity than previous approeaches. In addition, this

approach allows us to include any number of robots in the formations, by only

setting the desired position with respect to the leader or the other robots. There-

fore, this chapter introduces a novel approach to solve robot formation motion

planning which is robust and fast enough to work under uncertainty conditions.

Future work in robot formation using FM2 is related to improving the be-

haviour of the global formation during its movement, making it more autonomous

when deciding how to move through the map in terms of flexibility. One inter-

esting way to do this is to create a difficulty map which expresses, at each point

of the initial map, the complexity that point represents to the formation (how

much the formation has to change its shape, for example).

More complex fields can be studied, such as cooperative SLAM with forma-

tions, where the uncertainty is also present when sensing the environment.
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Figure 4.18: Sequence of a pyramid-shaped robot formation (represented by cones) navigating
in a 3D environment.



Chapter 5
Adapting FM2 Method to the

Environment

5.1 Introduction

In this chapter, we get a fast path planning method based on FM2. We present

an algorithm which creates random paths for a given map using the FM2 path

planning method. The main idea of the proposed algorithm is to preprocess

an already known map in order to get the common possible paths for that map,

combining them when a new path is required. The key idea is that in a real robot

application, the environment will be known (or obtained through SLAM). This

environment can be dynamic but its main parts will remain, such as floor, doors,

walls, and so on. Then the path planning method adapts to the environment

creating some kind of road map which allows the FM2 to spend the shortest

possible time in path planning.

To achieve this goal a new concept is included, which we have called FM2

skeleton: a set of random paths, obtained by means of FM2, distributed through-

out the map. This set creates a collision-free, smooth road map.



64 Adapting FM2 Method to the Environment

5.2 FM2 skeleton

The objective is to create a skeleton which have branches in every zone of the

map. The next points outline an algorithm to obtain a FM2 skeleton:

• Model the environment as an occupancy grid map where the walls and

obstacles are modeled with 0 (black) and the clear space with 1 (white).

• Distribute uniformly an n number of random points throughout the whole

map. Erase those points which fall in zones where there are obstacles or

walls.

• Include characteristic points of the environment. Those points where the

robot commonly operates such as doors, light switches, furniture, among

others.

Then, a loop begins whose steps are the following:

1. Select a point i.

2. Search a point j which Euclidean distance to the point i is higher than a

value dmin. If no point is found, then select the farthest one.

3. Compute the path between the two points i,j according to the FM2 method

(specifically, we use the saturated version of the FM2, at level sat).

4. Store the path with the other paths calculated in a binary map, called Wp.

The loop ends when there are not any more couple points to obtain more

paths. The resulting Wp can be considered as a FM2 skeleton. Figure 5.1 in-

cludes a flowchart of the algorithm detailed in the previous lines.
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between i and j

Add path to Wp

Figure 5.1: Flowchart of the construction of the FM2 skeleton.
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The figure 5.2 a) shows the random points distribution and 5.2 a) displays

the skeleton obtained for those points. As one can see, all the rooms of the

environment are connected with smooth branches.

(a) (b)

Figure 5.2: a) Initial binary map with the set of n points randomly chosen but uniformly dis-
tributed. b) Wp map.

5.3 Path planning over the FM2 Skeleton

Once the FM Skeleton has been created, the next step is to compute the path

between the desired points. The main function of this skeleton is just to route

the wave expansion of the FM2 algorithm in order to save computational time.

Therefore, the algorithm is as follows:

• Dilate (with image processing techniques) the Wp map to obtain a thick-

ened skeleton, ensuring the continuity of the skeleton.

• Compute the maximum between Wp and a value gmin close to 0 but al-

ways positive. This allows to expand the FMM wavefront out of the skele-

ton if necessary.

• The final map Wskeleton is calculated including the walls and obstacles (as

black values) to the skeleton map Wp.
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These three steps, show in Figure 5.3 can be summarized in the following

formula:

Wskeleton = min (W0,max(gmin,Wp ⊕ SE)) (5.1)

Dilate Wp Wp = max(Wp,gmin) Wskeleton = min(W0,Wp)

Figure 5.3: Use of the FM2 skeleton in path planning.

where W0 is the initial binary map and the symbol ⊕ represents the dilation

operation with the structuring element SE, which shape can be a disk or square

(in 2D) and its size depends on how thick the skeleton is wanted to be (large

SE means more area covered by the skeleton but less time reduction when plan-

ning).

Then, the result is a map Wskeleton in which the skeleton has the highest

gray level (1) and the rest of the free space have a low gray value (gmin). The

reason to do this is that the initial and final points are not restricted to fall into

the FM2 skeleton when searching a path. If the points are not in it, the robot will

take the shortest path to return into the skeleton where the wave expansion is

much faster due to its higher gray level in the Wskeleton map.

Finally, to obtain a path over the FM2 skeleton it is enough to apply the base

FMM, expanding a wave from the goal point until it reaches the initial point.

This will provide a funnel-shaped potential which represents the time the wave

takes to expand. The last step is then to apply gradient descent over this poten-

tial to obtain the path.

This method can be employed as an offline unsupervised learning algorithm,

where the robot is able to predict which paths are going to be executed more of-

ten. Thus precalculating and merging those paths in a skeleton form can be in-

terpreted as a training process where the path planning system evolves to adapt

to the environment constrains.
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Figure 5.4 shows the final performance of the proposed algorithm. Although

the generation of the diagram is not deterministic, the algorithm appears to pre-

dict where are the main zones of the map (corridors between rooms) and the

branches of the skeleton go into each room. The paths provided by our method

could be sometimes a little worse (a bit longer, with not very smooth curves) but

the time reduction could be worthy in most of the applications. For this partic-

ular case, when simulating in a 628x412 pixels map the time elapsed with the

proposed algorithm is 0.16 seconds, while it took 0.40 seconds to the standard

FM2 method. The generation of the skeleton (using the parameters described

in the next section) took 13.24 seconds. In the worst case, the proposed method

will last at most the same time as the standard FM2 when the required path is

quite new.

(a) (b) (c)

Figure 5.4: a) Comparison of the paths obtained with the saturated variation of the FM2 method
(in red) and the proposed method (in blue) shown over the thickened skeleton. b) Same compar-
ison but shown over the initial map. c) Potential obtained when propagating the wave through
other skeleton of the same map. Blue means getting closer to the global minimum and red means
that the time is increasing.

5.3.1 Setting the parameters

The proposed algorithm has a set of parameters which can change significantly

the skeleton obtained. Following, how this parameters influence is described:

• Number of points, n: An equation has been experimentally obtained which
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assures a balanced distribution of points (in 2D):

n = α(
√
x+
√
y) (5.2)

where x and y are the dimensions of the map (columns and rows respec-

tively) and α is a factor manually chosen.

• Minimum distance between points, dmin: Our experiments point out that a

good equation dmin can be found by:

dmin = β
√

(x2 + y2) (5.3)

where β is another factor to be set manually.

• Minimum gray level, gmin: Between 0 and 1.

• Saturation gray level, sat: Between 0 and 1.

Table 5.1 shows the parameters configuration for many experiments, includ-

ing a time comparison where ts, tpp and tFM2 are the times elapsed when cre-

ating the initial skeleton, when planning over the skeleton and when planning

with the standard FM2 method, respectively. Also, figure 5.5 plots the results

obtained in these experiments. The α and β values have been chosen experi-

mentally with the objective of achieve enough points and with enough connec-

tivity among them. Note that if α is too small the skeleton will have not enough

branches to cover all the map. However, if it is set too large the skeleton will

cover a wide area and the time reduction will not be that important. In the case

of β, is a small value is chosen the skeleton will not have enough connectivity.

Note that in the experiment (6) the environment is different. In this case the map

is twice the size of the other experiments’ map. The α has to change this is new

map has more rooms, and with α = 2 the probability of having a room without

an skeleton branch is high.
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Table 5.1: Time results depending on the algorithm parameters.

Test α n β dmin (grid cells) gmin sat ts (s) tpp (s) tFM2 (s)

1 2 76 0.3 158 0.001 0.3 3.34 0.10 0.20

2 4 152 0.3 158 0.001 0.3 6.82 0.11 0.20

3 2 76 0.1 53 0.001 0.3 5.82 0.07 0.20

4 2 76 0.3 158 0.1 0.3 3.94 0.21 0.21

5 2 76 0.3 158 0.001 0.7 4.21 0.09 0.20

6 4 188 0.3 250 0.001 0.3 23.24 0.17 0.46

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

(d) Experiment 4 (e) Experiment 5 (f) Experiment 6

Figure 5.5: Skeleton depending on the different parameters. In most cases the path obtained
using the FM2 skeleton (blue) is very close to the one obtained with the standard FM2 method
(red).
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The results outline that the time reduction for 2D planning use to be around

50% (depending on the parameters) obtaining a path as smooth and safe as with

the base FM2 method. The time consuming by the skeleton generation depends

mostly on the parameters given to the algorithm but this is not critical since this

process can be executed offline.

5.4 Extension to d-dimensions

Many mobile robotics applications can be approximated by a 2-dimensional

problem. But other ones simply cannot. The complexity of mobile manipulators

or UAVs control does not accept bi-dimensional solutions. Therefore, most of

the algorithms proposed which work very well in 2 dimensions often fail when

increasing the dimensionality (due to the computational complexity).

Although it has been proved that the complexity of the FMM is O(n) (Yatziv,

Bartesaghi, & Sapiro, 2005), it suffers the same problem when expanding to more

than 2 dimensions, since the computational cost increases exponentially with

the dimension of the problem. The proposed method in this chapter assumes

that the skeleton generation is done offline, and the path planning has to be

done online. The fact of creating a skeleton by using FM2 allows to search paths

within the skeleton in d dimensions. Thus, the problem can be reduced to an

unidimensional one, since the wavefront propagation is being guided by a tube.

To give a better intuition of this fact, we use the simile proposed by Greene to

justify the string’s theory (Greene, 1999): let us suppose an ant moving in a cable.

This cable exists in 3 dimensions but the ant only can move forwards/backwards

and clockwise/counterclockwise around the cable. The movement of the ant can

be perfectly defined with only two values (dimensions). Moreover, if we put the

ant inside the cable, it can only move forwards or backwards (because moving

clockwise or counterclockwise changes nothing when it is inside the cable) so

the movement in 3 dimensions is restricted to only one degree of freedom. Also,

if we look at a cable from far away it appears to be unidimensional (a line).
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If we apply this concept to path planning, the wavefront is expanded trough

the d-dimensional skeleton the dimensionality can be considered as d ' 1. It

is true that inside the tube the dimension is still d, but the volume of the tube

is negligible in comparison with the volume of the rest of the space (d = 3) or

hyperspace (d > 3).

The algorithm to employ is exactly the same as proposed in section 5.3. It

is only necessary to adapt the parameters described in section 5.3.1. Figure 5.6

shows an example in 3 dimensions, where the proposed method took 0.22 sec-

onds, while the time elapsed with the standard FM2 method was 0.76 seconds.

The skeleton was generated in 15.12 seconds.

(a) 3D initial map with FM2 path. (b) The skeleton and also the path obtained.

Figure 5.6: Example of application of the algorithm in 3 dimensions.

5.5 Conclusions and future work

This chapter presents a novel method for fast path planning without losing the

safeness or smoothness in the obtained paths in comparison with the standard

FM2 path planning method. Also, the simulations carried out with Matlab ®

show an important time reduction when calculating the path: 50% or even more.
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It has been shown how the different parameters of the algorithm influence

the skeleton and the time taken when calculating new paths.

Lastly, it has been proved that it is possible to extend the algorithm to more

than 2 dimensions. Thus, the proposed algorithms is applicable not only in mo-

bile robot applications but manipulation and UAVs among others.

The future work is focused on removing the stochasticity of the algorithm.

One of the main ideas is to automatically obtain the points to generate the FM2

skeleton from the map characteristics such, for example, the center of the dif-

ferent rooms. Another interesting work is to convert the skeleton creation to an

online algorithm, allowing it to evolve and adapt to environment changes.





Chapter 6
Kinesthetic Teaching and Learning

based on FM2

6.1 Introduction

During the last years, robot configurations are becoming more and more com-

plex, with a larger number of degrees of freedom (DOF) involved in order to

get better and more natural movements. Thus, the control of the robot becomes

challenging and the commonly used techniques are unuseful. This problem has

been faced by means of learning techniques. The movements the robot should

execute are shown to the robot in many different ways and the robot learns how

it has to behave.

It is important to remark that in learning by imitation (also referred to as pro-

gramming by demonstration) (Calinon, 2009), the demonstrations can be pro-

vided either by observing a demonstrator doing a task or by physical guiding of

the robot during the task (kinesthetic teaching). While the first method requires

the system to handle the re-targeting problem, the kinesthetic teaching method

simplifies the problem using the same embodiment for both demonstration and

reproduction.
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In this chapter we propose a novel kinesthetic teaching method based on the

FMM. The method assumes that the task taught to the robot can be codified into

a path planning problem, either in joint coordinates or Cartesian coordinates.

One of the main advantages of the proposed method is that it is very easy to

implement and very intuitive, leaving aside complex theoretical formulation.

The proposed method takes into account the environment, since it modifies the

path planning algorithm of the system instead of modifying the motion control.

In the next section the learning algorithm is explained and its stability is an-

alyzed. In section 6.3 the effect of the two parameters of the proposed approach

is studied. Following, section 6.4 shows a experiment carried out in a real robot.

Finally, section 6.5 outlines the application of the proposed method to more than

2 dimensions.

6.2 Kinesthetic Teaching and Learning Algorithm Based

on FM2

The FM2 has proved to work efficiently in path planning tasks. The results of this

method only depend on the environment conditions, such as obstacles, walls or

other robots. This means that the method will always give the same results when

working under the same environment, without taking into account previous

experience.

The objective of the learning is to introduce new data to the FM2 algorithm to

improve the motion planning modifying the velocities potential W depending

on what an expert shows to the robot. This will cause that the paths given by a

modified W potential will present different characteristics from those given by

the standard FM2 method. Since only W is being modified, the good character-

istics of the FM2 method remain, such as smoothness and local-minima-free.

This chapter is focused on kinesthetic teaching, more precisely, guiding the

robot (usually robotics manipulators or humanoid robot’s arms) through the
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desired trajectory. During the guidance, the robot records the data and later it

adapts the parameters of the underlying mathematical model, commonly based

on probabilistic formulas.

When being taught, the main objective of the robot is to be able to reproduce

by itself the motion learned and adapt it to new motion requirements. Also, it

is expected to improve the motion taught making it smoother, more efficient,

faster, etc. Hence, the objective can be translated into learning a path and adapt

it when necessary. Therefore the algorithm works over the path taught and over

the path planning algorithm implemented. It does not mind if the teaching is

being carried out in end-effector coordinates or joint coordinates.

6.2.1 Learning Algorithm

The proposed algorithm uses data gathered during a kinesthetic teaching pro-

cess. During this learning, the end-effector’s positions are stored with a time

cycle T . The proposed algorithm can work as well with joint-coordinates, but to

make it easier to understand the algorithm we use the end-effector’s Cartesian

coordinates.

The proposed algorithm starts with the velocities map of the environment

W saturated at level sat, and the set of n points obtained during the kinesthetic

guiding. The algorithm works as follows:

1. Connect all the points in the same order they were stored. This connection

can be done using straight lines but we recommend to use FM2 to take

advantage of this method. Since this is considered to be done offline the

computational cost is not very important. These connections are stored in

a binary map Wp.

2. Dilate Wp using a structuring element SE, whose size aoi defines the area

of influence of the learned data.
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3. FMM is applied to the Wp, in order to convert it to a gray scale map. This

map has to be rescaled to a maximum value of (1− sat).

4. Add the rescaled map Wp to the initial map W.

5. Restore the obstacles and walls to value 0 because the previous steps could

delete this information.

6. (Optional) Apply a smoothing filter in order to do not have harsh changes

in the final velocities map W.

By following these simple steps, shown in Figure 6.1, the velocities map is

modified. The new paths provided by the path planning system will be very dif-

ferent depending on the experience of the robot. Figure 6.2 shows the different

steps of the algorithm. In this case the path obtained is very similar to the one

taught but much is smoother.

Connect points, Wp,i Dilate Wp Apply FMM over Wp

Rescale Wp to (1-sat)W = W + WpW = min(W, W0)
(Optional) 

Smoothing filter  
over W

Wp = Wp + Wp,i

  

∀ Path i

Figure 6.1: Flowchart of the learning method based on the FMM.

6.2.2 Stability Analysis

The motion of robots can be considered as a nonlinear autonomous dynami-

cal system, where autonomous refers time-invariant. In this case, the proposed

learning algorithm is asymptotically stable according to the Lyapunov Stability

theorem (Slotine & Li, 1991). This theorem expresses that a function ẋ = f(x) is

asymptotically stable at the point pg if a continuous and continuously differen-

tiable Lyapunov function V (x) can be found such that it is always positive, its

derivative is always negative and V (xg) = V̇ (xg) = 0.
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(a) Wp first step. (b) Dilated Wp.

(c) Final W and different paths. (d) Comparison between demonstration and repro-
duction.

Figure 6.2: Different steps of the learning algorithm.
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(a) (b)

Figure 6.3: Two examples of D(x). a) D(x) depends on the environment and also on the path
taught. b) D(x) depends only on the experience.

Let us consider as Lyapunov function the one generated when expanding

the second wave of FM2, which we have called D(x). This function starts at the

goal point of the robot pg, where the D(pg) value is 0. Given the fact that this

wave expands always with non-negative velocities, the value of D(x) will be

higher (positive) as the wave gets farther from pg. Finally, the derivative of the

function is always negative since D(x) is free of local minima.

These conditions will be always satisfied, regardless the environment or even

the number and shape of the given paths during the learning process. Figure 6.3

serves as an illustration of the aforementioned. In 6.3 a) it can be seen how all the

possible points will converge to the destination but with the tendency of follow-

ing the learned data. In 6.3 b) all the paths will also converge to the destination

regardless the initial point. However, since the experience is very different, the

robot will follow different behaviors depending on the starting point.

This algorithm has been compared against a method called Stable Estimator of
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(a) SEDS (b) FML

Figure 6.4: Comparison between SEDS and FM Learning.

Dynamical Systems (SEDS) (Khansari-Zadeh & Billard, 2011). In figure 6.4 a) the

reproductions with SEDS are always similar to the taught data, this means that

the streamlines are uniform. With the proposed algorithm (Figure 6.4 b)) these

streamlines converge to the goal point as with SEDS. However, if the starting

point is out of the area of influence of the taught trajectories, the experience

will not be taken into account. Therefore, it is possible to set this behaviour

tuning the aoi and sat parameters. This could be considered as a drawback of

the algorithm depending on the application A further comparison among FM

Learning and other methods and also a detailed study of the influence of the

parameters is matter of future research.

6.3 Analysis of the parameters

The proposed learning method has two parameters: saturation level, sat, and

area of influence, aoi. In this section we discuss how they affect to the results.

The fact of having two parameters to be set can be considered both an ad-

vantage and a drawback. The drawback is that tuning those two parameters can

be a slow process and it could be difficult to find the correct combination to ob-

tain the desired results. However, those two parameters allow us to set different

behaviours during the learning process, obtaining different results for the same
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taught trajectories.

The size of the aoi becomes very important in the performance of the mo-

tion. If this size is too small, the robot will just repeat the movement taught.

On the other side, if the size is too big, the motion will differ a lot from the

demonstrations. Figure 6.5 depicts this fact. Here, the robot has been taught 5

similar trajectories in a 500x500 pixels workspace with obstacles included. In

the first case (figure 6.5 a) and b)) the aoi size is 10 pixels. The path obtained

after learning is just the shortest path of those taught. However, in the second

case (figure 6.5 c) and d)) the aoi size is 30 pixels. All the paths have turned into

a unique learned, wide white zone in the velocities map. The path obtained in

this case can be considered as a generalization of the taught paths. The aoi size

also depends on whether we are carrying out one-shot learning or with multiple

demonstrations.

From the reproductions field point of view, the aoi parameter influences on

how the reproduced trajectories will follow the taught pattern. In Figure 6.6 a)

the reproductions go directly to the taught trajectories and connect with them

in a sharp way. As we increase the aoi value (Figures 6.6 b) and c) ) this con-

nections get smoother. Intuitively, the aoi represents the liberty of the reproduc-

tions against the taught trajectories. In other words, how similar we want the

reproductions to be with respect to demonstrations. Higher aoi values mean

smoother paths, so the similarity will be lower.

By modifying the sat level, the effect on the reproductions field is very dif-

ferent. Figure 6.7 show that in those places in which there are no experience (no

trajectories taught), a low sat value (Figures 6.7 a) and c) ) make the reproduc-

tions to tend to the closest place with experience. Therefore, the reproductions

far from the demonstrations go perpendicular to the taught trajectories to reach

them as soon as possible. However, once the sat value is increased (Figures

6.7 b) and d) ), the reproductions tend to go to the goal point. Intuitively, the

sat value means the importance of the taught trajectories against the rest of the
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(a) (b)

(c) (d)

Figure 6.5: Different paths using learned data depending on the aoi parameter in a 500x500
pixels map. a),b) aoi = 10 pixels. c),d) aoi = 30 pixels.
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(a) sat = 0.1, aoi = 5px (b) sat = 0.1, aoi = 15px (c) sat = 0.1, aoi = 25px

Figure 6.6: Comparison among different aoi values for a given sat level in a 500x500 workspace.

workspace. Higher sat values mean that the gray level of the zones without ex-

perience will be higher, so the trajectories will tend to go to the goal point more

directly.

(a) sat = 0.1, aoi = 5px (b) sat = 0.3, aoi = 5px

(c) sat = 0.1, aoi = 15px (d) sat = 0.3, aoi = 15px

Figure 6.7: Comparison among different sat level value for given aoi sizes in a 500x500
workspace.
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6.4 Experiments

To prove the feasibility of the proposed learning method, it has been imple-

mented in the mobile manipulator Manfred V2. To gather the data, the arm is

placed in different positions and the Cartesian coordinates of the end-effector

are stored. After, the algorithm is run and the robot performs the learned trajec-

tory.

For better understanding, the arm is moved in a 2-dimensional plane and

only the XZ coordinates of the end-effector are stored. One-shoot learning is

carried about. This is, the robot is taught only once since we assume that this is

a desirable point by robot’s end users.

With the learned data, the D(x) map (figure 6.8 a)) converges always to the

goal point, independently of the starting point of the trajectory and resembling

as much as possible to the learned trajectory. Figure 6.8 b) compares the two

trajectories carried out by the robot (with the initial taught data and with the

learned data), using sat = 0.5 and aoi = 35 pixels in a 500x500 pixels region

(each pixel corresponds to 1 millimeter). It is possible to see how the second

trajectory adapts to the learned one and improves it, developing an smoother

trajectory. Finally, figure 6.9 shows the robot Manfred V2 developing both mo-

tion sequences.
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Figure 6.8: a) D(x) map obtained from Manfred. b) Comparison between the taught trajectory
and the one reproduced once the robot has learned.

(a)

(b)

Figure 6.9: The robot Manfred V2 developing the trajectories. a) Taught trajectory. b) Repro-
duction with FM Learning starting from a different point and with almost the same goal point.
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6.5 Extension to 3D

As FM, FM2 and all the other steps of the proposed learning algorithm are de-

fined for n dimensions, this section proves that the method also works for 3

dimensions without any modification. In our case, the third dimension is z, but

it could be another one, such as roll, pitch, yaw if working on end-effector coor-

dinates or joint angles if working in joint coordinates.

In Figure 6.10 a) two taught trajectories are shown together with the final W

map they generated, using a 50x50x50 centimeters workspace, with a resolution

of 1 cm per voxel, with parameters: sat = 0.4 level of and aoi = 5 centimeters.

Figure 6.11 shows the robot Manfred V2 executing these trajectories. Addition-

ally, Figure 6.10 b) includes two reproduced trajectories from different points

of the work space. Both reproductions end in the same point (defined as the

mean point of the taught trajectories) following the pattern shown to the sys-

tem during the training process. In figure 6.12 Manfred V2 carry out these two

reproductions.

(a) W map (b) Reproductions

Figure 6.10: Taught trajectories (blue and red) together with the map W and two reproductions.
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(a) Taught trajectory 1, blue in Figure 6.10.

(b) Taught trajectory 2, red in Figure 6.10.

Figure 6.11: The robot Manfred V2 developing the taught trajectories in 3D.

(a) Reproduced trajectoy 1 of Figure 6.10.

(b) Reproduced trajectoy 2 of Figure 6.10.

Figure 6.12: The robot Manfred V2 developing the learned trajectories in 3D.
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It is worthy to mention that the aoi parameter has to be carefully chosen

according to the dimensions employed. Since we used the spatial coordinates,

we are assuming that the robot can perform in the same way in the three axes.

However, if the workspace axes are multi-domain, i.e., spatial and joint coordi-

nates, the aoi parameter has to be set accordingly to every dimension and the

scale employed.

6.6 Conclusions and future work

This chapter presents a novel point of view for robot learning based on fast

marching techniques. The proposed algorithm is not based on probabilistic ap-

proaches which can derive in local instabilities and non-convergences in case of

an incomplete data set during the learning process.

The presented method erases the stochasticity of most of the learning meth-

ods, whose results vary depending on the sequence followed when learning.

The kinesthetic teaching using FM2 ensures global stability. Another important

advantage is that it is very easy to include obstacles in the workspace.

In section 6.2.1 it has been discussed how the different parameters of the

method change the behavior of the learning, being possible to set whether the

robot will learn and follow very well the shown trajectories or if it is going to

extract the main information of a set of paths, generalizing the information pro-

vided. The learning algorithm has been implemented in Manfred V2 to prove

the feasibility of the system. The results are shown in section 6.4.

The chapter has focused on considering end-effector coordinates. To sim-

plify, it has been supposed that such end-effector is moving in two dimensions.

Nevertheless, the proposed algorithm, since it is based on FMM, can be applied

to 3 or more dimensions, being possible to apply the algorithm to joint coordi-

nates if desired.

This chapter proves that the FMM can be applied to approach learning solu-

tions and hence it opens a new point of view in learning techniques. The FMM
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is a very easy to implement and to understand technique. Therefore, the future

work will focus on maturating FM Learning at the level of the current learning

techniques, including among others: different velocities to the motions taught

to the robot, a forgetting factor, deeper comparisons, and so on. Another very

interesting case to study is the behaviour of the proposed method under pertur-

bations or dynamic obstacles.



Chapter 7
Performance Study of FM2 for

Remote Handling Operations in

the ITER Project

7.1 Introduction

The world’s rising demand for energy is a key issue in the near future, since cur-

rent energy sources are either finite (fossil fuels), or their output is insufficient

to meet demand. It is in this context that the International Thermonuclear Ex-

perimental Reactor (ITER) project was born, which will act as an experimental

facility to prove the feasibility of fusion power as an alternative, safe and reliable

source of energy.

The reactor will be installed inside the Tokamak Building (TB) of ITER, as

illustrated in Figure 7.1. The remote handling (RH) systems are required dur-

ing maintenance operations that will play an important role in the ITER project,

(Ribeiro et al., 2011). One of such systems is the Cask and Plug Remote Han-

dling System (CPRHS), a mobile vehicle responsible for RH operations of trans-

portation of contaminated components and equipment from the TB to the Hot
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Cell Building (HCB). The largest CPRHS has dimensions 8.5m x 2.62m x 3.7m

(length, width, height) and when fully loaded weights approximately 100 tons.

The CPRHS is divided into three main components: the Cask, that contains the

load; the Pallet, that supports the Cask; and the Cask Transfer System (CTS).

The CTS acts as a mobile robot, by driving the entire vehicle, or by moving

independently from the other components. The CTS has a rhombic kinematic

configuration, as depicted in Figure 7.2. This configuration allows to control

the velocity, Vi, and orientation, θi, of each wheel i ∈ {R,F}. Additionally the

rhombic configuration provides the ability for both wheels to follow the same

path, in this chapter referred as line guidance, or for each wheel to follow a dif-

ferent path, referred as free roaming providing flexibility when moving in the

cluttered environments of ITER. In (Ribeiro, Lima, Aparício, & Ferreira, 1997)

a comparison about different kinematic configuration is carried out. As shown

in Figure 7.3, the rhombic configuration is the one which offers highest mobility

and maneuver capability, minimizing the spanned area with the main drawback

that the control is more complex.

In Figure 7.1 a snapshot of the Trajectory Evaluator and Simulator program

is shown. This will be detailed in the following chapter.

The nature of the ITER project requires robust path planning and motion

algorithms. Beyond the obstacle avoidance, the cluttered environment and the

large dimensions of the CPRHS convert this typical navigation problem in which

the typical solutions are not enough and new, improved path planning algo-

rithms are required.

In this context, this chapter studies the application of the FMM to the path

planning problem in the ITER scenarios. We will focus on the line guidance

approach, since it is enough to solve most of the situations that could be given

during ITER operation.

Although the ITER scenarios are 2D, the structure of the building and the di-

mensions of the CPRHS turn this problem into a very hard one. Also, the ITER
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Tokamak Building
TES

CPRHS

Cask

Pallet CTS

Figure 7.1: Left - CAD model of the CPRHS. Middle - Level B1 of the TB with the CPRHS in
operation. Right - Snapshot of the software application TES to evaluate the trajectory optimiza-
tion.

safety and operating requirements are quite strong. Hence, classical path plan-

ning methods need to be improved in order to accomplish all the restrictions.

Concretely, the ITER requirements focus on safety and smoothness. The

large dimensions of the CPRHS, the cluttered environment and the contami-

nated nature of its load turn the motion planning problem into a very complex

one, demanding a robust planner. The trajectories must be also the shortest in

time while satisfying energy optimization for the CPRHS. Another very impor-

tant requirement is that the minimum safety distance to obstacles to be guar-

anteed is 300 mm (Fonte, Valente, Vale, & Ribeiro, 2010; Valente, Vale, Fonte,

& Ribeiro, 2011). Since FM2 considers that the robot is a point, without kine-

matic constrains, it is mandatory to use a collision detector algorithm to study

the reliability of the trajectories given.

The FM2 method could be directly applied to the several scenarios of ITER.

However, the study of FM2 on ITER will focus on the level B1 of the TB, Figure
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Rhombic 
Configuration

θR

θF

VR

VF

Both wheels on 
the same path

Different paths for 
each wheel 

Figure 7.2: Left - Model of the rhombic vehicle and the Cask Transfer System control variables.
Right - Possible motion options for a rhombic like vehicle.

7.4 because this is the most building part of the ITER installations. Due to the

radiation, this is the places where errors are most difficult to solve so the deepest

analysis is required here.

In Figure 7.5 it is shown that the FM2 provides smooth and reliable paths as

usual for the level B1 of the TB. However, the dimensions of the vehicle and its

complex kinematics lead to a deeper study of the reliability of the FM2 in such

environment.

Next section will focus on how this collision detector is implemented lever-

aging the characteristics of the FM2 method. The reliability of FM2 on ITER

environments is analyzed in section 7.3. Lastly, in section 7.4 a 3-dimensional

path planning approach is studied.
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(a) Cart (b) Differential (c) Rhombic

(d) Area spanned

Figure 7.3: Comparison of the different kinematic configurations.
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Figure 7.4: Level B1 of the TB and its corresponding port numbers.

Goal Point

Figure 7.5: Level B1 of the TB and its corresponding port numbers.
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7.2 Collision detector based on FM2

Thanks to the fact that the velocities map has a value for every point directly

proportional to the distance to the closest obstacle, it can be easily translated

into a distances map. The most important point is that, calculating the gradient

in each point of this map, the direction to the closest obstacle is also obtained.

Since these operations are computationally expensive, it is important to stress

that these maps should be calculated offline and once per map (a gradients map

can be previously computed). These concepts are illustrated in Figures 7.6 and

7.7. In Figure 7.8 it is detailed how these gradients are in the level B1 of the TB.
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Figure 7.6: Use of the velocities map as a collision checker.
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Figure 7.7: Application of the collision checker to the CPRHS.

Figure 7.8: Gradients in the level B1 of the TB.
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Therefore, to compute the distance to the closets obstacle (and also where

it is), a set of as many as desired points are distributed along the perimeter of

the CPRHS. The gray level of all these points is checked and the lowest one is

chosen. Thus, it is already possible to obtain the distance to the closest obstacle

and also its direction, according to Figure 7.9.

(a) Binary map (b) Gradients of the veloc-
ities map
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Figure 7.9: Application of the collision checker to the CPRHS.

The results of the application of this algorithm with real ITER building map

and CPRHS’s dimensions are shown in the next section.

7.2.1 Collision detector validation and simulation

In order to validate the proposed collision detection algorithm, simulation tests

are carried out. In these, both wheels of the CPRHS have to follow the computed

path. Also, the velocity command applied to the CPRHS is according to the po-

sition of the front wheel of the CPRHS (green) within the velocities map (thanks

to the FM2 characteristics).

For the collision detection, one point every centimeter is places around the

CPRHS’s perimeter (a total of 2224 points). Also, the map dimensions are 1648x1450
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Figure 7.10: Sequence of the CPRHS navigating and using the proposed collision detector.

pixels, which mean a grid size of 5 centimeters. All paths were split in 100 it-

erations. In Figure 7.10 this collision detector is shown working, detecting the

closest obstacle to the vehicle, its direction and also the distance. With this tool,

it is possible to analyze the performance of the FM2 in the ITER environments.

7.3 Performance of the FM2 method in the ITER environ-

ment

Among the 18 possible trajectories, the simulation of those two which could be

more representative and meaningful (port cells 10 and 13) are shown in Figures

7.11, 7.12 and 7.13, including also the distances to the closest obstacle and their

velocity profiles of all iterations.
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(a) Port 10 (b) Port 13

Figure 7.11: Path and CPRHS’ poses from the lift to the ports. Red CPRHS means collision.
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(b) Port 13

Figure 7.12: Minimum distances during the motion.
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(b) Port 13

Figure 7.13: Velocities profiles.

Simulations show that the FM2 method, with both wheels of the CPRHS fol-

lowing the path, has collision points in the lift and when entering the port cells.

This is due the fact that FMM and FM2 does not take into account the kinemat-

ics of the vehicle when planning. However, thanks to the high mobility of the

CPRHS and the FM2 collision checking algorithm, the best way to avoid these

collisions is to detect the collision points and allow the wheels to move outside

the path prior the collision occurs. Therefore, it is mandatory to include a new

layer in the path planning algorithm to remove these conflict points, leaving the

rest of the path as is.

As additional information, the computation time of the trajectories use to be

approximately 3.5 seconds (using Matlab® in an Intel Core 2 Duo 3 GHz PC).

Furthermore, the time it takes to check collisions is between 20 and 40 millisec-

onds.
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7.4 Planning in 3 dimensions with FM2 in ITER environ-

ments

With the collision detection algorithm proposed above, it is possible to create a

3D C-space of the environment, with the two dimensions of the CPRHS’s posi-

tion and the vehicle’s orientation as the third dimension. Computing a trajectory

along the C-Space built taking into account the vehicle’s dimensions, it is possi-

ble to guarantee the absence of collisions.

Since the FM2 is based on the FMM, it can be applied to more than 2 dimen-

sions easily. The C-space has been built iteratively placing the CPRHS in every

position and with every possible angle. This is a slow task, but it can be done

offline and once per map. Results are shown in Figure 7.14, in which maneuvers

where forced to prove the collisions absence.

(a) Port 1 (b) Port 13

Figure 7.14: Paths computed in 3D, using the orientation as third dimension.
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It is worthy to mention that as the third dimension included in these exper-

iments are the orientation of the vehicle, the interpretation of the gray level for

the velocity profile and also the optimality in terms of time changes. For in-

stance, the CPRHS, when moving in a straight line, has an orientation which is

not parallel to the trajectory (this orientation minimizes the area spanned by the

vehicle). Therefore, the third dimension, as it is not a spatial dimension, adds a

behaviour that is not desirable for this application.

7.5 Conclusions

Throughout this chapter the FM2 path planning method has been outlined and

applied to the ITER-RH problem. Results show that a standalone FM2 algorithm

is not enough to satisfy the ITER requirements: there are collisions in very con-

crete points of the scenario. However, the path quality (in terms of smoothness

and safety) is high in the rest of the points.

A variation of the standard FM2 method has been proposed, planning 3-

dimensional trajectories. These trajectories are collision-absent but the space

spanned by the CPRHS could become a problem. This issue could be overcame

by modifying the velocities map, but a deeper analysis is required.

The application of FM2 to the ITER has still many challenges: the grid map

discretization can become a problem is more resolution is required, making the

algorithm slower. Even more, although the FM2 is safe enough, the dimensions

of the CPRHS provokes some collisions, which is the main point to be solved.

The next chapter presents a novel way of using FM2 in the ITER which solves

the problem presented here.



Chapter 8
Integration of FM2 in the TES

Program of the ITER Project

8.1 Introduction

The Trajectory Evaluator and Simulator (TES) shown in Figure 8.1 is a software

application developed under the grants F4E-2008-GRT-016 and F4E-GRT-276-01

(European Joint Undertaking for ITER and the Development of Fusion Energy

Work Programme 2008 and 2010) related with the optimization of trajectories

for the CPRHS in TB and HCB.

The TES was developed under MATLAB® environment. The main goal of

this application is to generate optimized trajectories between an initial and a

final pose (a pose is defined by a position and orientation) for a vehicle with

a rectangular 2D projection and rhombic kinematics, in a general scenario. In

particular, this software has been applied to the CPRHS, the CTS and rescue

casks in the scenarios of the ITER, e.g., between the lift and a Vacuum Vessel

(VV) port cell in TB and the HCB. Besides the optimized trajectory generation,

this application provides, among others, the following additional features (Vale,

Valente, Fonte, Ribeiro, & Ferreiro, 2012):
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Figure 8.1: A - Simulation window (A1 vehicle, A2 trajectory, A3 maps. B - Main menu. C -
Tuning panel. D - Navigation panel. E - Tools panel.

• Compute, load and save trajectories.

• Simulate vehicle following a path.

• Identify the most critical points of a trajectory, i.e., the most critical posi-

tions, where the vehicle is closer to the obstacles.

• Generate reports and plots with the history of velocities and minimum

distances to obstacles along the optimized paths, as shown in Figure 8.2.
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Figure 8.2: Example of a report provided by TES.
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The main objective of the TES environment is to provide a complete analysis

and validation for the trajectories that are going to be applied during ITER oper-

ation. It also contains control strategies for the path following, vehicle dynamics

and localization algorithms, simulating very accurately the CPRHS missions. In

the following section the current path planning procedure in TES is detailed. In

section 8.3 this procedure is modified in order to include FM2 as initialization

algorithm. In section 8.4 a complete set of simulations are carried out, providing

very interesting results. As there are some trajectories which require maneu-

vers, section 8.5 analyzes this problem and the performance of our proposed

approach. Finally, in section 8.6 the saturated variation of FM2 is included, im-

proving the results even more.

8.2 Path planning procedure in the TES program

The vehicle is required to move along a path that simultaneously maximizes

the clearance to obstacles and reducing the distance between the start and goal

poses (position and orientation). The proposed motion planning methodology

is based on a three step approach, (Fonte et al., 2010), as illustrated in Figure 8.3.

Figure 8.3: Path planning procedure in TES.

Geometric path evaluation: given the environment model and initial and

goal poses, an initial geometric path is found. At this point the aim is to find a
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path connecting the initial and goal objectives that can act as an initial condition

for the next path optimization stage.

Path optimization: this module receives the preceding geometric solution as

input and returns an optimized path.

Trajectory evaluation: in this final module, the speed profile is defined along

the optimized path transforming it into a trajectory, which is the output of the

proposed motion planning methodology.

8.2.1 Geometric path evaluation

From the 3D CAD models, a 2D representation is obtained by projecting at floor

level all the relevant elements that might conflict with the CPRHS. The levels of

TB and HCB are well structured scenarios that can be modeled as a set of planar

walls, whose footprint is a line segment and thus the 2D map can be considered

as a set of line segments. The 2D map is decomposed into a set of triangles, by

using Constrained Delaunay Triangulation (Chew, 1987), to account for all walls

(Figure 8.4). Afterwards the algorithm determines the set of sequence of trian-

gles that contain and link the start and goal positions, as illustrated in Figure

8.5. Each sequence of triangles is then converted into a sequence of points (mid

point of the common edge of two consecutive triangles) yielding a path. The

shortest and feasible path is chosen as the geometric path, acting as the initial

condition for the path optimization module as shown in Figure 8.6.
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Figure 8.4: The initial map with the generated Constrained Delaunay Triangulation.

(a) Port 12 (b) Port 16

Figure 8.5: Sequence of triangles that link the start and goal positions.
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(a) Port 12 (b) Port 16

Figure 8.6: Sequence of points that generate the initial path of the procedure.
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8.2.2 Path optimization

The initial geometric path does not guarantee a collision free path for a rigid

body, such as the CPRHS, as shown in the second image of Figure 8.7 and thus

may be unfeasible. Moreover this path is not smooth. To obtain an optimized

path, two criteria are included in the algorithm (Fonte et al., 2010): clearance

from obstacles, by increasing the distance from the vehicle to the walls and path

smoothness, entailing getting shorter and smoother paths without slacks. To

address the referred issues, the optimization procedure uses the elastic band

concept (Quinlan & Khatib, 1993), where the path is modeled as an elastic band,

similar to a series of connected springs, subjected to two types of forces: in-

ternal and external forces. The first are the internal contraction forces, whose

magnitude is proportional to the amplitude of displacement and determine that

the path becomes retracted and shorter. The repulsive forces are responsible for

keeping the path, and consequently the vehicle, away from obstacles (see Figure

8.8). After this procedure, the final paths are shown in Figure 8.9. Details about

stopping criteria are detailed in section 8.4.

The procedure until the optimization is completed is summarized in figure

8.10.
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(a) Port 12 (b) Port 16

Figure 8.7: Simulation of the CPRHS executing the initial path.

Figure 8.8: Schema of the elastic bands concept applied in the path optimization.
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(a) Port 12 (b) Port 16

Figure 8.9: Simulation of the CPRHS executing the optimized path.

Figure 8.10: From left to right: the initial map with the generated CDT and the computed
sequence of triangles between start and goal points, initial geometric path, path optimization
and final optimized trajectory.
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8.2.3 Trajectory evaluation

The final trajectory is obtained by defining the speed of the vehicle at each point

of the optimized path. In order to reduce the risk of collision in the case of

major malfunction, the speed is reduced once the distance to the nearest obstacle

decreases below a threshold value. Dynamic constrains, such acceleration and

speed limits, are also considered (Fonte et al., 2010).

Concretely, the CPRHS velocities are evaluated as a linear function of the

minimum distance to obstacles. When this distance is above a specified thresh-

old, a maximum allowable velocity for the CPRHS, vmax, is assumed. The veloc-

ity profile will thus resemble the minimum distance evolution along the path, as

illustrated in figure 8.11.

Figure 8.11: Top: distance to the closest obstacle. Bottom: CPRHS velocity profile.
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8.2.4 Geometric path evaluation issues

A geometric representation of the environment has some advantages since it

provides a very accurate representation of the scenario and it does not depends

on grid cell discretization. However, in complex scenarios, the geometric repre-

sentation results in some issues. In particular with the CDT, the representation

requires a huge number of triangles, yielding to a computational effort. In addi-

tion, the CDT may result on sharp initial paths still far from the optimal one, as

shown in Figure 8.7 and Figure 8.16. As a consequence, the optimization takes

longer. To overcome these issues, in this chapter a new initialization method is

proposed based on the FMM which is detailed in the next section.

8.3 Replacing geometric path evaluation with FM2

The trajectory provided by FM2 algorithm does not take into account the kine-

matics of the vehicle, neither it assures that it is feasible, since clashes might oc-

cur. However, the trajectory given by FM2 algorithm is closer to a final solution,

when compared to the initial geometric path obtained with CDT, as illustrated in

the right image of Figure 8.12. Taking into account the work flow for trajectory

optimization described in (Fonte et al., 2010), the geometric path initialization

using CDT can be replaced by the FM2, as illustrated in Figure 8.13.

Since the FM2 algorithm returns a single path to be followed by both wheels

of the vehicle, comparisons will be made considering only line guidance. In

addition, most of the nominal operations are accomplished using line guidance.

8.4 Simulated results

In order to assess the quality of the trajectories obtained using either CDT or FM2

initializations a comparison criteria is defined. The trajectories are compared

in terms of clearance, smoothness, computation time and number of iterations
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Figure 8.12: Left - initial geometric path obtained with CDT; Right - trajectory obtained with
FM2.
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Figure 8.13: Work flow for trajectory optimization.

required in the optimization module.

In Figure 8.14 it is shown a schematic of the evolution of the path during the

optimization process. The path connects the fixed initial and final points and

has 3 additional points. The index n identifies the iteration of the optimization

process.

At each iteration it is computed the variation of the path in relation to the

previous iteration. The variation is computed evaluating the distance between

each point of the path at iteration n and the line segment defined by the two

nearest points of the path from iteration n− 1, as illustrated in Figure 8.15. The

20 highest distances are selected and their median is computed. The stopping
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Figure 8.14: Schema of the path evolution in each iteration during the trajectory optimization.

criteria is achieved when the median value is below a threshold (defined as 0.02

m) or if the number of iterations reaches 70.
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Figure 8.15: Definition of the variation of the path between consecutive iterations: distance
evaluated to a single point.

The simulated results presented in this chapter were obtained using the map

of level B1 of TB (in order to allow the reader to compare with the previous

chapter). The CDT provides a rough initial path mainly in the vicinity of the lift,

highly subject to the shape of the triangles, as shown in Figure 8.16. The FM2

method is independent to the geometric representation used in CDT to generate

an initial path.
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Figure 8.16: From left to right: map of level B1 in TB, CDT of the map, geometric path obtained
from CDT and path obtained with FM2.

In Figure 8.17 it is presented a comparison between the initial and final trajec-

tories using CDT and FM2, for port 12. The map was slightly modified to reduce

the effect of the triangulation in CDT in the vicinity of the lift, as illustrated in

Figure 8.16. Initially both present clashes, but the initial trajectory using FM2

is smoother. However, the final optimized trajectories using the CDT and FM2

initialization are very similar as illustrated in Figure 8.17. The variation of the

20 highest distances and the respective median along the iterations are shown

in Figure 8.18, where the methodology with the FM2 initialization required less

number of iterations to converge. The differences between the optimized trajec-

tories can be identified when comparing the minimum distances to the closest

obstacle, as depicted in Figure 8.19. The trajectory using FM2 initialization in

general has slightly higher obstacles clearance.
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(a) Initial trajectories (b) Optimized trajectories

Figure 8.17: Trajectories for port 12: FM2 (green) and CDT (blue).

Figure 8.18: Variation of the median (in red) along iterations for port 12 in level B1 of TB.
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Figure 8.19: Comparison between the minimum distances along the optimized trajectories using
the CDT and FM2 initializations for port 12 in level B1 of TB.

In Figure 8.20 it is presented a summary of the comparison of results be-

tween FM2 and CDT initializations. In general the FM2 initialization requires

less computation time and number of iterations to converge, over the CDT ini-

tialization, which allows to decrease the computational effort that is needed for

the optimization.
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Figure 8.20: Comparisons of computational time (left) and number of iterations (right) for
trajectory optimization using CDT and FM2.
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8.5 Inclusion of maneuvers

There are trajectories in TB that must include one or even two maneuver to as-

sure the required safety margin to the closest obstacles. Two examples of trajec-

tories with one and with two maneuvers are depicted in Figure 8.21.

(a) (b)

Figure 8.21: Examples of trajectories which requires maneuvers. The maneuver pose is defined
by the location of the wheels.

In Table 8.1 it is detailed which of the trajectories require maneuvers, which

are most of them.

Table 8.1: Number of maneuvers for every port of the TB.

Port 4 5 6 7 8 9 10 15 16 17 18
# of maneuvers 1 1 1 2 1 1 2 1 1 1 1

From the path planning point of view, these maneuvers are treated as in-

dependent paths which are concatenated before the optimization procedure.

Therefore, for n maneuvers, it will be necessary to compute n + 1 paths. Due

to this fact, it is possible to ensure that the integration of FM2 will perform as

well as done in the previous sections. In any case, some simulations have been

carried out within TES, as detailed in Table 8.2 and depicted in Figure 8.22. As
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expected, there is a reduction in the computation time, and a improvement on

the minimum distances according to the previous section and the final paths are

very similar with both CDT and FM2 initialization.

Table 8.2: Results of maneuvers simulations in terms of iterations and time elapsed.

CDT Initialization FM2 Initialization
# of Iterations Time elapsed (s) # of Iterations Time elapsed (s)

Port cell
7 32 62 25 53

18 34 76 29 65
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(a) Initial trajectories (b) Optimized trajectories

(c) Distances comparison

Figure 8.22: Maneuvers in port cell 7: FM2 (green) and CDT (blue).
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Figure 8.23 shows an example of maneuvers on a different port.

(a) Initial trajectories (b) Optimized trajectories

(c) Distances comparison

Figure 8.23: Maneuvers in port cell 18: FM2 (green) and CDT (blue).
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8.6 Performance of the saturated variation of FM2

In order to analyze if the saturated variation of FM2 provides any improvement,

the same ports of the previous section have been studied. The saturation level

for the velocities map was experimentally set to 0.7. Although this saturation

level could not be really meaningful, in Figure 8.24 a comparison against the

standard FM2 velocities map and the saturated version is given.

(a) No saturation. (b) Saturation level: 0.7.

Figure 8.24: Comparison of the different velocities map W employed.

The results provided in Table 8.3 show that the initialization using the satu-

rated variation of FM2 outperforms even more the CDT initialization since it is

faster than the standard FM2 initialization. The minimum distances and the fi-

nal paths remain almost the same as when using the standard FM2 initialization,

as shown in Figure 8.25 and Figure 8.26.
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Table 8.3: Comparison of FM2 and its saturated variation in terms of iterations and time
elapsed.

FM2 Initialization Saturated FM2 Initialization
# of Iterations Time elapsed (s) # of Iterations Time elapsed (s)

Port cell
7 25 53 24 51

18 29 65 27 50

(a) Initial trajectories (b) Optimized trajectories

(c) Distances comparison

Figure 8.25: Maneuvers in port cell 7: saturated FM2 (green) and CDT (blue).
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(a) Initial trajectories (b) Optimized trajectories

(c) Distances comparison

Figure 8.26: Maneuvers in port cell 18: saturated FM2 (green) and CDT (blue).
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8.7 Conclusions and future work

This chapter presented an improvement to the motion planning methodology

used to compute the trajectory optimization in remote handling operations of

ITER or in other cluttered environments. The geometric path initialization using

CDT was replaced by a powerful method: the FM2. Given the simulated results,

the optimization procedure is faster using the FM2 when compared with the

CDT. The FM2 is also independent to the triangle representation, provides a

smoother initial path and has no local minima. In terms of clearance the final

trajectories with both methods are similar with small improvements when using

the FM2.

We remark that the velocities profiles are not compared in this case because

both TES and FM2 implicitly compute these profiles in the same way: as a linear

function of the distance to the closest obstacle. Therefore, we consider that this

comparison is not necessary.

Further more, the analysis carried out with the saturated variation of FM2 in-

dicates that there is still an improvement margin in the optimization procedure.

However, this turns into a more complex problem in which the saturation value

has to be carefully chosen.

The future work in this section focuses on speeding up the optimization al-

gorithm, since there are some parts of the FM2 initialization path which do no

require to be optimized. The application of this procedure to other different

scenarios is also a very interesting research topic.





Chapter 9
Conclusions and Future Work

Although specific conclusions and future work for each chapter have been given,

in this chapter the main conclusions of the whole document are extracted.

9.1 Conclusions

As shown in previous theses and journal papers, the Fast Marching Method is a

very versatile one, not only for path planning but also for more complex applica-

tions which require a path planning step (Garrido, 2008),(Sanctis, 2010),(Jurewicz,

2010). This thesis goes further with the application of the Fast Marching Method

and the Fast Marching Square planning method. We have detailed how to inte-

grate the Fast Marching Square method to very different problems: robot forma-

tion path planning in chapter 4, adaptation of the path planning to the environ-

ment in chapter 5 or to previous experiences (or learning) in chapter 6. Finally,

in chapters 7 and 8 the Fast Marching Square method has been applied to a real,

very complex scenario which supposes the Remote Handling operations in the

ITER project, where the requirements are very strong and restrictive.

Along all the chapters, it has been noticeable the capability of the Fast March-

ing Square algorithm to be adapted to every different problems with very good
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results. The main point to remark is that, while in other approaches the planning

method is used as a tool to achieve the objective, whilst in our case is the proper

path planning method which accomplishes the mission. In other words, we

can talk about a generalized path planning method because most of the planning

problems (if not all of them) can be undertaken with Fast Marching Square, re-

gardless the number of dimensions of the problem, since Fast Marching Method

is defined for any number of dimensions.

However, the main drawback of Fast Marching Square is that it is based on

a grid cell representation of the environment. The Fast Marching Method has a

low computational complexity of O(n log(n)) although it can be approximated

with an O(n) implementation (Yatziv et al., 2005), where n represents the num-

ber of cells. Therefore, since Fast Marching Square consists on applying the Fast

Marching Method twice, its computational complexity is also O(n log(n)) or

O(n), depending on the implementation.

Nevertheless, the number of cells n increases exponentially when the num-

ber of dimensions of the environment gets higher. Because of this, Fast March-

ing Square is useful up to 3 dimensions but for a higher number of dimensions

it starts to be very slow. Fortunately, most of the applications can be formulated

into a 2D or 3D problem. For example, instead of computing a 6-dimensional

path for a robotic arm with 6 degrees of freedom, it could be computed the end-

effector coordinates in 3D and apply inverse kinematics.

9.2 Future work

Very detailed future work guidelines have been proposed in each chapter. The

results obtained and the ideas for new developments turn Fast Marching Square

into a very interesting field of research. Further more, other works parallel to

this thesis have been carried out so new, improved versions of the Fast Marching

Square have been designed.

For instance, the Fast Marching Square Star (FM2*) incorporates an heuristic
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to improve the computational time when calculating a new path, as A* does with

Dijkstra. Also, a directional Fast Marching Square (dFM2) has been developed.

In this new version, the velocity profile of the robot not only depends on the

velocities map, but also on its gradient. So far, with the standard Fast Marching

Square, when a robot is very close to a wall or obstacle but is getting farther from

it, the velocity is low without considering that the robot is trying to get far. With

this new version, the velocity profile and also the paths are modified in order to

obtain more logical and optimal behaviours of the robot.

The application of these two new variants to the proposed problems in this

thesis could improve the performance and new challenged could be faced.

Finally, another, totally different work proposal is to create a sampling-based

version of the Fast Marching Method. This could suppose the removal of its

main drawback: grid cell decomposition and, therefore, apply the same Fast

Marching Method-based applications to even higher dimensions with very good

computational times.

9.3 Relevance of the work

The work carried out within this thesis have been recognized by the researchers

community. Some journal papers have been published (Garrido, Moreno, Gómez,

& Lima, 2012), (Gómez, Lumbier, Garrido, & Moreno, 2012) and accepted (Valero-

Gómez, Gómez, Garrido, & Moreno, 2012). The work has been exposed in

many conferences, both international (Garrido, Moreno, Lima, & Gómez, 2012),

(Gómez, Álvarez, Garrido, & Moreno, 2012), (Gómez, Arismendi, Garrido, &

Moreno, 2012) and national (Gómez, Garrido, & Moreno, 2012), (Gómez, Gar-

rido, Moreno, Vale, et al., 2012a). A paper has been also submitted to ICRA2013

(Gómez et al., 2013) and a book chapter is going to be published in the next

weeks (Gómez, Garrido, Moreno, Vale, et al., 2012b). Also, an implementation

of the FM2 method has been carried out in (Giakoumidis, Bak, Gómez, Llenga,

& Mavridis, 2012), where an Unmanned Ground Vehicle (UGV) is assisted in the
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path planning with an Unmanned Air Vehicle (UAV).



Appendix A
List of Acronyms

Acronyms

CDT Constrained Delaunay Triangulation

CPRHS Cask and Plug Remote Handling Systems

CTS Cask Transfer Sytem

DARPA Defense Advanced Research Project Agency

DMP Dynamic Movement Primitives

DOF Degrees of Freedom

DUE Dynamic Uncertain Environment

EVT Extended Voronoi Transform

FMM Fast Marching Method

FM2 Fast Marching Square

HCB Hot Cell Building



136 List of Acronyms

HMM Hidden Markov Models

IROS IEEE/RSJ International Conference on Intelligent Robotics and Systems

ITER International Thermonuclear Experimental Reactor

ML-RRT Manhattan-like Rapidly-exploring Random Trees

MLT-RRT Manhattan-like Transition-based Rapidly-exploring Random Trees

RH Remote Handling

RRT Rapidly-exploring Random Trees

TB Tokamak Building

TES Trajectory Evaluator and Simulator

T-RRT Transition-based Rapidly-exploring Random Trees

VFM Voronoi Fast Marching

VV Vacuum Vessel
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