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Abstract— This paper presents a novel robotic learning tech-
nique based on Fast Marching Square (FM

2). This method,
which we have called FM Learning, is based on incorporating
previous experience to the path planning system of the robot
by taking into account paths taught to the robot via kinesthetic
teaching, this is, guiding manually the robot through the
desired path. The method proposed ensures that the path
planning is always a globally asymptotically stable system at the
target point, considering the motion as a nonlinear autonomous
dynamical system. The few parameters the algorithm has can
be tuned to get different behaviours of the learning system. The
method has been evaluated through a set of simulations and
also tested in the mobile manipulator Manfred V2.

I. INTRODUCTION

During the last years, robot configurations are becoming

more and more complex, with a larger number of degrees

of freedom (DOF) involved in order to get better and more

natural movements. Thus, the control of the robot becomes

challenging and the commonly used techniques are unuseful.

This problem has been faced by means of learning tech-

niques. The movements the robot should execute are shown

to the robot in many different ways and the robot learns how

it has to behave.

It is important to remark that in learning by imitation

(also referred to as programming by demonstration) [2],

the demonstrations can be provided either by observing a

demonstrator doing a task or by physical guiding of the robot

during the task (kinesthetic teaching). While the first method

requires the system to handle the re-targeting problem, the

kinesthetic teaching method simplifies the problem using the

same embodiment for both demonstration and reproduction.

Data acquisition during demonstration can be also dealt with

markers, as proposed in [3], where a 3D point measurement

system is employed to transfer the motion patterns to the

robot. In [4] programming by demonstration is used by

teaching a robot to carry out specific tasks such as loading

the dishwasher or taking out bottles from the refrigerator.

Many different approaches have been proposed to imple-

ment the robot learning. One approach has been to use the

concept of motion primitives [5]. The dynamic movement

primitives (DMP) are a set of nonlinear differential equations

which creates smooth control policies. These primitives are

learned by means of imitation learning and reinforcement

learning. A more recent approach based on the motion

primitives idea is proposed in [6], where the primitives

learning is carried out using incremental kinesthetic teaching

by means of Hidden Markov Models (HMM).
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Other approach is to show the robot how to perform a

discrete motion (i.e. point-to-point trajectories) [7], where the

robot performs a movement keeping the motion as similar as

possible to the demonstrations. Calinon goes a step further

and it is proposed a control strategy for a robotic manipulator

operating in unstructured environments while interacting

with human operators [8]. Such situations are starting to be

common in manufacturing.

Lastly, a different, very interesting approach is given in

[9]. In this case apprenticeship learning is carried out by

supposing a Markov decision process where the reward

function is not explicitly given. By observing an expert

developing a task, this algorithm guesses that the expert is

maximizing an unknown reward function, expressible as a

linear combination of known features.

All the mentioned methods are a few examples of the wide

literature about robot learning. All of them have proved a

good performance within their objectives, but their under-

lying mathematical model is usually based on probabilistic

terms, causing the learning to be stochastic and even unstable

under certain conditions. Besides, these approaches are not

able to take into account environment conditions, since their

are based on modifying motion control parameters.

In this paper we propose a novel kinesthetic teaching

method based on the Fast Marching (FM ) algorithm [11].

The method assumes that the task taught to the robot can be

codified into a path planning problem, either in joint coordi-

nates or Cartesian coordinates. One of the main advantages of

the proposed method is that it is very easy to implement and

very intuitive, leaving aside complex theoretical formulation.

The proposed method takes into account the environment,

since it modifies the path planning algorithm of the system

instead of modifying the motion control.

The rest of the paper is organized as follows. In section

II the Fast Marching FM and Fast Marching square (FM2)

algorithms are summarized. Following, section III details

the learning algorithm proposed and contains the simulation

results. Section IV shows the experiments carried out and th

results obtained. Lastly, section V summarizes the paper and

outlines the main conclusions.

II. FAST MARCHING AND FAST MARCHING

SQUARE

Fast Marching FM method is an algorithm proposed by

J. Sethian in 1996 to approximate the viscosity solution of

the Eikonal equation. We will use Sethian’s notation [12].

Let us assume that a wave starts propagating in T = 0.

This wave has a generic limit called frontwave (a curve in

two dimensions, a surface in three and so on) that separates



the region in which the limit has arrived from the region the

front has not visited yet (see figure 1). A wavefront with

velocity F , non-negative, can be characterized by the arrival

time T for each position x. For one dimension:

x = F · T (1)

The spatial derivative becomes the gradient:

1 = F
dT

dx
(2)

and the magnitude of the gradient is:

1

F
= |∇T | (3)

Since the gradient is orthogonal to the level set of the

arrival function T (x), this concept can be applied for mul-

tiple dimensions. The final expression is known as Eikonal

equation:

|∇T (x)|F (x) = 1 (4)

As an example for two dimensions, a frontwave expanding

with unitary velocity in all directions can be expressed by

the level set γt as follows:

γt = {(x, y)/T (x, y) = t} (5)

Figure 2 depicts this example, adding the time as a third

axis for the frontwave at T = 0, 1, 2....

A. The Fast Marching Square Algorithm

Let us suppose that a robot wants to move from its current

position p = (x, y) to a goal position pg = (xg, yg). If a wave

with constant velocity F is expanded from pg until it reaches

p, a scalar function T (x, y) is obtained. Applying gradient

descent to T (x, y) from p a path to pg will be found, which

is optimal according to a minimal distance criterion.

Nevertheless, the obtained trajectory is not guaranteed to

be smooth and safe since it runs too close from corners,

obstacles and walls. The typical solution for this problem is

to enlarge the obstacles by the size of the robot, but this still

does not accomplish the smoothness requirements for a good

trajectory. Figure 3 plots this problem.

Fig. 1: Frontwave expanding with velocity F .

Fig. 2: Expansion over the time of a circular wavefront.

The Fast Marching square (FM2) algorithm [13] solves

this problem using a two-step wave propagation. It is concep-

tually close to the navigation functions of Rimon-Koditschek

[14] since it uses a potential field with only one local

minimum located at the goal point. However, FM2 does not

display the typical problems of the potential-based methods

such as local minima, no passage between closely spaced

obstacles and oscillations due to narrow passages or in the

presence of obstacles [15].

The main steps of the FM2 method are:

1) Modeling. An a priori grid-based map is created by

updating the corresponding occupied cells with black

and white information avoiding complex modeling.

2) Object enlarging. The objects detected in the previous

step are enlarged by the radius of the mobile robot

to ensure that the robot does not collide or accept

passages narrower than its size.

3) FM 1st step. A wave is propagated using the FM
method from all the occupied cells. The result is a

potential map W represented in gray scale in which

black represents walls and obstacles and the farther the

cells are from them, the lighter they become. W can be

interpreted as a velocity (or slowness) map F (x) in eq.

4. This step could be the bottleneck of the algorithm.

Its complexity is O(n), where n is the number of cells

of the map, which increases exponentially with the

dimensions taken into account. However, this step have

to be carried out only once for every environment.

4) FM 2nd step. The FM method is applied again to the

Fig. 3: Expansion over the time of a circular wavefront

(constant velocity in all directions).









(a)

(b)

Fig. 11: The robot Manfred V2 developing the trajectories. a) Taught trajectory. b) Reproduction with FM Learning starting

from a different point and with almost the same goal point.

implemented in Manfred V2 to prove the feasibility of the

system. The results are shown in section IV.

The paper has focused on considering end-effector coor-

dinates. To simplify, it has been supposed that such end-

effector is moving in two dimensions. Nevertheless, the

proposed algorithm, since it is based on Fast Marching, can

be applied to 3 or more dimensions, being possible to apply

the algorithm to joint coordinates if desired.

This paper proves that Fast Marching can be applied to

approach learning solutions and hence it opens a new point

of view in learning techniques. Fast Marching is a very easy

to implement and to understand technique. Therefore, the

future work will focus on maturating Fast Marching learning

techniques at the level of the current ones, including among

others: different velocities to the motions taught to the robot,

a forgetting factor, deeper comparisons, and so on. Another

very interesting case to study is the behaviour of the proposed

method under perturbations.
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