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Abstract— This paper presents a novel robotic learning tech-
nique based on Fast Marching Square (FA/?). This method,
which we have called FM Learning, is based on incorporating
previous experience to the path planning system of the robot
by taking into account paths taught to the robot via kinesthetic
teaching, this is, guiding manually the robot through the
desired path. The method proposed ensures that the path
planning is always a globally asymptotically stable system at the
target point, considering the motion as a nonlinear autonomous
dynamical system. The few parameters the algorithm has can
be tuned to get different behaviours of the learning system. The
method has been evaluated through a set of simulations and
also tested in the mobile manipulator Manfred V2.

I. INTRODUCTION

During the last years, robot configurations are becoming
more and more complex, with a larger number of degrees
of freedom (DOF) involved in order to get better and more
natural movements. Thus, the control of the robot becomes
challenging and the commonly used techniques are unuseful.
This problem has been faced by means of learning tech-
niques. The movements the robot should execute are shown
to the robot in many different ways and the robot learns how
it has to behave.

It is important to remark that in learning by imitation
(also referred to as programming by demonstration) [2],
the demonstrations can be provided either by observing a
demonstrator doing a task or by physical guiding of the robot
during the task (kinesthetic teaching). While the first method
requires the system to handle the re-targeting problem, the
kinesthetic teaching method simplifies the problem using the
same embodiment for both demonstration and reproduction.
Data acquisition during demonstration can be also dealt with
markers, as proposed in [3], where a 3D point measurement
system is employed to transfer the motion patterns to the
robot. In [4] programming by demonstration is used by
teaching a robot to carry out specific tasks such as loading
the dishwasher or taking out bottles from the refrigerator.

Many different approaches have been proposed to imple-
ment the robot learning. One approach has been to use the
concept of motion primitives [5]. The dynamic movement
primitives (DMP) are a set of nonlinear differential equations
which creates smooth control policies. These primitives are
learned by means of imitation learning and reinforcement
learning. A more recent approach based on the motion
primitives idea is proposed in [6], where the primitives
learning is carried out using incremental kinesthetic teaching
by means of Hidden Markov Models (HMM).
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Other approach is to show the robot how to perform a
discrete motion (i.e. point-to-point trajectories) [7], where the
robot performs a movement keeping the motion as similar as
possible to the demonstrations. Calinon goes a step further
and it is proposed a control strategy for a robotic manipulator
operating in unstructured environments while interacting
with human operators [8]. Such situations are starting to be
common in manufacturing.

Lastly, a different, very interesting approach is given in
[9]. In this case apprenticeship learning is carried out by
supposing a Markov decision process where the reward
function is not explicitly given. By observing an expert
developing a task, this algorithm guesses that the expert is
maximizing an unknown reward function, expressible as a
linear combination of known features.

All the mentioned methods are a few examples of the wide
literature about robot learning. All of them have proved a
good performance within their objectives, but their under-
lying mathematical model is usually based on probabilistic
terms, causing the learning to be stochastic and even unstable
under certain conditions. Besides, these approaches are not
able to take into account environment conditions, since their
are based on modifying motion control parameters.

In this paper we propose a novel kinesthetic teaching
method based on the Fast Marching (F'M) algorithm [11].
The method assumes that the task taught to the robot can be
codified into a path planning problem, either in joint coordi-
nates or Cartesian coordinates. One of the main advantages of
the proposed method is that it is very easy to implement and
very intuitive, leaving aside complex theoretical formulation.
The proposed method takes into account the environment,
since it modifies the path planning algorithm of the system
instead of modifying the motion control.

The rest of the paper is organized as follows. In section
II the Fast Marching FM and Fast Marching square (F'M?)
algorithms are summarized. Following, section III details
the learning algorithm proposed and contains the simulation
results. Section IV shows the experiments carried out and th
results obtained. Lastly, section V summarizes the paper and
outlines the main conclusions.

II. FAST MARCHING AND FAST MARCHING
SQUARE

Fast Marching F'M method is an algorithm proposed by
J. Sethian in 1996 to approximate the viscosity solution of
the Eikonal equation. We will use Sethian’s notation [12].

Let us assume that a wave starts propagating in 7' = 0.
This wave has a generic limit called frontwave (a curve in
two dimensions, a surface in three and so on) that separates



the region in which the limit has arrived from the region the
front has not visited yet (see figure 1). A wavefront with
velocity F', non-negative, can be characterized by the arrival
time 7" for each position x. For one dimension:

r=F T (1)

The spatial derivative becomes the gradient:

dr
l=F— 2
dx @
and the magnitude of the gradient is:
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Since the gradient is orthogonal to the level set of the
arrival function T'(x), this concept can be applied for mul-
tiple dimensions. The final expression is known as Eikonal
equation:

IVT(x)|F(x) =1 4)

As an example for two dimensions, a frontwave expanding
with unitary velocity in all directions can be expressed by
the level set 7, as follows:

Y =A{(z,9)/T(z,y) =t} (5)

Figure 2 depicts this example, adding the time as a third
axis for the frontwave at T'= 0,1, 2....

A. The Fast Marching Square Algorithm

Let us suppose that a robot wants to move from its current
position p = (z,y) to a goal position p, = (z4,y,). If a wave
with constant velocity F' is expanded from p, until it reaches
p, a scalar function T'(x,y) is obtained. Applying gradient
descent to T'(x,y) from p a path to p, will be found, which
is optimal according to a minimal distance criterion.

Nevertheless, the obtained trajectory is not guaranteed to
be smooth and safe since it runs too close from corners,
obstacles and walls. The typical solution for this problem is
to enlarge the obstacles by the size of the robot, but this still
does not accomplish the smoothness requirements for a good
trajectory. Figure 3 plots this problem.
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Fig. 1: Frontwave expanding with velocity F'.

Fig. 2: Expansion over the time of a circular wavefront.

The Fast Marching square (F'M?) algorithm [13] solves
this problem using a two-step wave propagation. It is concep-
tually close to the navigation functions of Rimon-Koditschek
[14] since it uses a potential field with only one local
minimum located at the goal point. However, F'M? does not
display the typical problems of the potential-based methods
such as local minima, no passage between closely spaced
obstacles and oscillations due to narrow passages or in the
presence of obstacles [15].

The main steps of the F'M? method are:

1) Modeling. An a priori grid-based map is created by
updating the corresponding occupied cells with black
and white information avoiding complex modeling.

2) Object enlarging. The objects detected in the previous
step are enlarged by the radius of the mobile robot
to ensure that the robot does not collide or accept
passages narrower than its size.

3) FM Ist step. A wave is propagated using the F'M
method from all the occupied cells. The result is a
potential map W represented in gray scale in which
black represents walls and obstacles and the farther the
cells are from them, the lighter they become. W can be
interpreted as a velocity (or slowness) map F'(x) in eq.
4. This step could be the bottleneck of the algorithm.
Its complexity is O(n), where n is the number of cells
of the map, which increases exponentially with the
dimensions taken into account. However, this step have
to be carried out only once for every environment.

4) FM 2nd step. The FFM method is applied again to the
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Fig. 3: Expansion over the time of a circular wavefront
(constant velocity in all directions).



slowness map. The origin of the wave is the goal point
and it propagates until it reaches the current position
of the robot. A new potential map D is obtained. This
can be interpreted as T'(x) in eq. 4 and it is used to
calculate the trajectories using gradient descent from
the robot current location.

Thanks to the laws of the electromagnetic waves prop-
agation, we can ensure that the path obtained will be the
shortest in terms of time due to the Fermat’s least time
principle. Figure 4 shows these steps where the smoothness
and safeness of the path obtained is proved.

B. Key Characteristics of the Fast Marching Square Method
The key characteristics of the F'M? method are:

o Absence of local minima. D(x) represents the expan-
sion over the time of a wave in media with different
velocities. As the time cannot go backwards, D(z) will
not have local minima since it is not possible to reach
a farther place without visiting the closer places.

o Fast response. The planner has to be fast enough to
be used reactively in case of unexpected obstacles. A
simple treatment of the sensor information and a low
complexity order algorithm is necessary.

e Smooth and safe trajectories. The trajectories do not
need to be refined and they keep a safe distance to
obstacles and walls.

o Completeness. As the method consists of the propaga-
tion of a wave, it will find a path from the initial position
to the goal position, if it exists.

C. FM?2 Saturated Variation

In large enough environments, it could be preferable to
move the robot with constant velocity only reducing it when
getting too close to obstacles or walls. Even more, it can
be considered that maintaining a minimum distance to the
obstacles is enough to consider the path as safe.

By saturating the slowness potential F'(z) at the maximum
velocity allowable for the robot or at the minimum distance
of the obstacles, the path will be more human-like and,
in most cases, shorter (in terms of distance) than with the
standard F'M? method.

The performance of this variation is shown in figure 5,
which is worthy to compare against figure 4.

(a) (b)

Fig. 4: a) Slowness potential F'(x). b) Second wave expan-
sion D(x) and the path obtained.

III. KINESTHETIC TEACHING WITH F M?

The FM? has proved to work efficiently in path planning
tasks. The results of this method only depend on the envi-
ronment conditions, such as obstacles, walls or other robots.
This means that the method will always give the same results
when working under the same environment, without taking
into account previous experience.

The objective of the learning is to introduce new data to the
FM? algorithm to improve the motion planning modifying
the slowness potential W depending on what an expert shows
to the robot. This will cause that the paths given by a
modified W potential will present different characteristics
from those given by the standard F'M? method. Since only
W is being modified, the good characteristics of the F'M?
method remain, such as smoothness and local-minima-free.

This paper is focused on kinesthetic teaching, more pre-
cisely, guiding the robot (usually robotics manipulators or
humanoid robot’s arms) through the desired trajectory. Dur-
ing the guidance, the robot records the data and later it
adapts the parameters of the underlying mathematical model,
commonly based on probabilistic formulas.

When being taught, the main objective of the robot is to be
able to reproduce by itself the motion learned and adapt it to
new motion requirements. Also, it is expected to improve the
motion taught making it smoother, more efficient, faster, etc.
Hence, the objective can be translated into learning a path
and adapt it when necessary. Therefore the algorithm works
over the path taught and over the path planning algorithm
implemented. It does not mind if the teaching is being carried
out in end-effector coordinates or joint coordinates.

A. Learning Algorithm

The proposed algorithm uses data gathered during a
kinesthetic teaching process. During this learning, the end-
effector’s positions are stored with a time cycle 7T'. The
proposed algorithm can work as well with joint-coordinates,
but to make it easier to understand the algorithm we use the
end-effector’s Cartesian coordinates.

The proposed algorithm starts with the slowness map of
the environment W saturated at level sat, and the set of n
points obtained during the kinesthetic guiding. The algorithm
works as follows:

1) Connect all the points in the same order they were
stored. This connection can be done using straight lines
but we recommend to use F'M?2 to take advantage of
this method. Since this is considered to be done offline
the computational cost is not very important. These
connections are stored in a binary map Wy,

2) Dilate W, using a structuring element S'E, whose size
aot defines the area of influence of the learned data.

3) Fast Marching method is applied to the Wy, in order
to convert it to a gray scale map. This map has to be
rescaled to a maximum value of (1 — sat).

4) Add the rescaled map Wy, to the initial map W.

5) Restore the obstacles and walls to value 0 because the
previous steps could delete this information.



6) (Optional) Apply a smoothing filter in order to do not
have harsh changes in the final slowness map W.

By following these simple steps, the slowness map is
modified. The new paths provided by the path planning
system will be very different depending on the experience of
the robot. Figure 6 shows the different steps of the algorithm.
In this case the path obtained is very similar to the one taught
but much is smoother.

The size of the aot becomes very important in the per-
formance of the motion. If this size is too small, the robot
will just repeat the movement taught. On the other side, if
the size is too big, the motion will differ a lot from the
demonstrations. Figure 7 depicts this fact. Here, the robot
has been taught 5 similar trajectories. In the first case (figure
7 a) and b)) the aot size is 10 pixels. The path obtained after
learning is just the shortest path of those taught. However, in
the second case (figure 7 ¢) and d)) the aos size is 30 pixels.
All the paths have turned into a unique learned, wide white
zone in the slowness map. The path obtained in this case
can be considered as a generalization of the taught paths.
The aoi size also depends on whether we are carrying out
one-shot learning or with multiple demonstrations.

B. Stability Analysis

The motion of robots can be considered as a nonlinear
autonomous dynamical system, where autonomous refers
time-invariant. In this case, the proposed learning algorithm
is asymptotically stable according to the Lyapunov Stability
theorem [18]. This theorem expresses that a function & =
f(z) is asymptotically stable at the point p, if a continuous
and continuously differentiable Lyapunov function V' (z) can
be found such that it is always positive, its derivative is
always negative and V'(z,) = V(z,) = 0.

Let us consider as Lyapunov function the one generated
when expanding the second wave of F'M?, which we have
called D(z). This function starts at the goal point of the robot
pg, where the D(z) value is 0. Given the fact that this wave
expands always with non-negative velocities, the value of
D(z) will be higher (positive) as the wave gets farther from
pg. Finally, the derivative of the function is always negative
since D(x) is free of local minima.

These conditions will be always satisfied, regardless the
environment or even the number and shape of the given
paths during the learning process. Figure 8 serves as an
illustration of the aforementioned. In 8 a) it can be seen
how all the possible points will converge to the destination
but with the tendency of following the learned data. In 8 b) all
the paths will also converge to the destination regardless the
initial point. However, since the experience is very different,
the robot will follow different behaviors depending on the
starting point.

This algorithm has been compared against a method called
Stable Estimator of Dynamical Systems (SEDS) [7]. In figure
9 a) the reproductions with SEDS are always similar to the
taught data, this means that the streamlines are uniform.
With the proposed algorithm (figure 9 b)) these streamlines
converge to the goal point as with SEDS. However, if the

Fig. 5: a) Saturated slowness potential F'(z). b) Second wave
expansion D(z) and the path obtained. Note that the level
lines and the path are not equal than in figure 4.
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starting point is out of the area of influence of the taught
trajectories, the experience will not be taken into account.
Therefore, it is possible to set this behaviour tuning the
aot and sat parameters. This could be considered as a
drawback of the algorithm depeding on the application A
further comparison among FM Learning and other methods
and also a detailed study of the influence of the parameters
is matter of future research.

IV. EXPERIMENTS

To prove the feasibility of the proposed learning method,
it has been implemented in the mobile manipulator Manfred
V2. To gather the data, the arm is placed in different positions
and the Cartesian coordinates of the end-effector are stored.
After, the algorithm is run and the robot performs the learned
trajectory.

For better understanding, the arm is moved in a 2-
dimensional plane and only the XZ coordinates of the end-
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Fig. 7: Different paths using learned data depending on the
aoi parameter in a 500x500 pixels map. a),b) aoi = 10
pixels. ¢),d) aoi = 30 pixels.

effector are stored. One-shoot learning is carried about. This
is, the robot is taught only once since we assume that this
is a desirable point by robot’s end users.

With the learned data, the D(z) map (figure 10 a))
converges always to the goal point, independently of the
starting point of the trajectory and resembling as much as
possible to the learned trajectory. Figure 10 b) compares the
two trajectories carried out by the robot (with the initial
taught data and with the learned data), using sat = 0.5
and aot = 35 pixels in a 500x500 pixels region (each pixel
corresponds to 1 millimeter). It is possible to see how the
second trajectory adapts to the learned one and improves it,
developing an smoother trajectory. Finally, figure 11 shows
the robot Manfred V2 developing both motion sequences. A
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Fig. 9: Comparison between SEDS (a) and FM Learning (b).

video is attached to the electronic document of this paper.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel point of view for robot
learning based on fast marching techniques. The proposed
algorithm is not based on probabilistic approaches which can
derive in local instabilities and non-convergences in case of
a incomplete data during the learning process.

The presented method erases the stochasticity of most of
the learning methods, whose results vary depending on the
sequence followed when learning. The kinesthetic teaching
using F'M? ensures global stability.

In section III-A it has been discussed how the different
parameters of the method change the behavior of the learn-
ing, being possible to set whether the robot will learn and
follow very well the shown trajectories or if it is going to
extract the main information of a set of paths, generalizing
the information provided. The learning algorithm has been
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Fig. 8: Two examples of D(z). a) D(z) depends on the
environment and also on the path taught. b) D(x) depends
only on the experience.

Fig. 10: a) D(x) map obtained from Manfred. b) Comparison
between the taught trajectory and the one reproduced once
the robot has learned.



Fig. 11: The robot Manfred V2 developing the trajectories. a) Taught trajectory. b) Reproduction with FM Learning starting

from a different point and with almost the same goal point.

implemented in Manfred V2 to prove the feasibility of the
system. The results are shown in section IV.

The paper has focused on considering end-effector coor-
dinates. To simplify, it has been supposed that such end-
effector is moving in two dimensions. Nevertheless, the
proposed algorithm, since it is based on Fast Marching, can
be applied to 3 or more dimensions, being possible to apply
the algorithm to joint coordinates if desired.

This paper proves that Fast Marching can be applied to
approach learning solutions and hence it opens a new point
of view in learning techniques. Fast Marching is a very easy
to implement and to understand technique. Therefore, the
future work will focus on maturating Fast Marching learning
techniques at the level of the current ones, including among
others: different velocities to the motions taught to the robot,
a forgetting factor, deeper comparisons, and so on. Another
very interesting case to study is the behaviour of the proposed
method under perturbations.
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