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Abstract— For robots to be able to fluidly collaborate with
and keep company to humans in indoor spaces, they need to be
able to perceive and understand such environments, including
furniture and rooms. Towards that goal, we present a system
for indoor furniture and room recognition for robots, which
has two significant novelties: it utilizes internet-derived as well
as self-captured models for training, and also uses object- and
room-context information mined through the internet, in order
to bootstrap and enhance its performance. Thus, the system
also acts as an example of how autonomous robot entities
can benefit from utilizing online information and services.
Many interesting subproblems, including the peculiarities of
utilizing such online sources, are discussed, followed by a real-
world empirical evaluation of the system, which shows highly
promising results.

I. INTRODUCTION

In every day life humans wander around buildings inte-
riors. Those spaces contain complex environments, which,
however, show some regularity that can be formalized. For
an harmonic symbiosis between humans and interactive
robots to emerge, the latter should develop good enough
skills for indoor scene understanding. Furnitures and rooms
are structural elements of every building interior. For that
reason, robots need to acquire capabilities for recognizing
and estimating different pieces of furniture and different
types of rooms, so that they achieve fluid collaboration and
communication with humans.

Regarding a relevant yet much more generic problem,
namely object recognition, there has been quite some re-
search for the last two decades. Nowadays, the interest in
object recognition has been reinforced with the evolution of
the hardware equipment, especially after the release of the
relatively low-cost Prime Sense RGB-Depth sensors in the
Microsoft Kinect camera or in the ASUS Xtion Pro LIVE.
These devices provide the typical RGB planar image but
also capture depth information for every pixel with VGA
resolution (640x480 pixels) at approximately 24 Hz. This
information is very helpful for any object segmentation and
recognition tasks.

On the other hand, recent research is focusing on both
taking into account object context and using World Wide
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Web data (such open datasets or 3D CAD models) to extract
knowledge and augment the training data. More specifically,
in most social media websites, users are encouraged to
provide a short description, in terms of tags or keywords,
for any kind of resource they create. Research has shown
that these descriptions are not randomly chosen, but quite a
large portion of them rather summarizes the main topic of
each resource [1].

In this paper, we develop a 3D object classifier trained and
tested upon different mixtures of web 3D models and real-
world data. We then extract automatically terms related to
indoor environments using the online database Wordnet and
query them as tags to Flickr in order to retrieve co- occur-
rence probabilities. Both sources of information, classifier’s
class-wise accuracy and co-occurrence probabilities, are then
combined and create a Markov Random Field (MRF) model
which consist our final probabilistic classifier. We further
exploit the MRF’s structure and contextual information in
order to obtain a belief about any novel, for the 3D classifier,
object as well as for the surrounding environment.

The paper is organized as follows: Section II provides an
extensive background in object context and recognition. Sec-
tion III describes the architecture we propose for 3D object
recognition taking into account co-occurrence probabilities
taken from the World Wide Web. In Section 4 the preliminary
results are shown. A discussion is carried out in Section V.
Finally, in Section VI the main conclusions of the paper are
outlined.

II. BACKGROUND

A. Robotic Vision for Indoor Environments

The design of a robotic vision system is highly influenced
by the field of application of such systems. One of the most
important aspects to take into account is if the robot is going
to operate outdoor or indoor.

In outdoor environments, there are often, not very clut-
tered, large free spaces. However, the moving speed of the
robot is generally higher than indoor environments as in the
case of autonomous cars. In those cases, Kinect-like cameras
are not useful due to their low range (maximum of 7 meters),
small field of view and their working principle, based on
infrared light (IR). Hence, 3D laser range scanners such as
the Velodyne are very well suited for these applications.

However, indoor scenarios require more detail to be de-
scribed, since they usually are very cluttered. In the case
of object recognition, Kinect-like cameras or stereoscopic
systems are the best solution, since they provide high-density



point clouds and also RGB information. More over, Kinect-
cameras are able to obtain 3D point clouds even without any
light source. This is impossible for stereoscopic cameras.
The main limitations of these cameras are not important in
indoor environments, since the speed of the robot is going to
be slow and the range is enough for most of the buildings’
interiors. Recent works in indoor environment mapping are
based on these devices [2], [3].

Focusing on assistive robotics, our main goal are indoor
environments. Due to this fact, we choose as sensor a Kinect
camera. However, we do not take into account the RGB
information, since one of the objectives of this work is to
create a framework which also works with other kind of
sensors, such as laser range scanners.

B. 3D Object Recognition

Since object recognition is a very generic category, we
focus on 3D object recognition. The methods for 3D objects
retrieval can be classified into four main groups, according to
[4]: Histogram-based, Transform-based, Graph-based, View-
based.

Apart of the aforementioned, there are also combinations
of the different groups. An example of combined descriptor
with good results is the Viewpoint Features Histogram (VFH)
[5]. The VFH combines information about the 3D shape of
the object by encoding the relations between the angles of the
surface normals for couples of points into a histogram. Even
more, the angle between those normals and the viewpoint
vector is also computed and attached to the histogram. There-
fore, VFH contains information of both view and geometrical
shape.

In recent years, multi-domain object recognition, in which
objects acquired through many different media, sensors, 3D
CAD models or hand drawn sketches, has attracted the
community’s attention. This provokes the usage of large, on-
line databases to train the system without requiring human
annotation.

In [6], although applied to outdoor environments, the
authors explain a way to train an object classifier by using
Google’s 3D Warehouse, exploiting datasets available on the
World Wide Web. A domain adaptation step was carried out
by means of feature augmentation [7] which increases the
accuracy of the classifier. More specifically, it is based on
creating a stacked feature vector which automatically places
the objects from the same domain closer than objects from
other domains. With the aid of this adaptation, the accuracy
of the classifier is increased when trying to identify real
objects by using CAD models in the training process.

We are going to use the algorithm proposed in [4] since
it supports multi-modal queries, where the object to identify
can be a 3D CAD model, a 3D partial view or even a 2D
image. The steps of the algorithm are:

• Pose estimation procedure. The scale and position of the
object is normalized to lie within a bounding sphere
of radius 1 with the center of mass at the center of
the coordinate system. For the orientation estimation,
a combination of Principal Component Analysis [8]

and Visual Contact Area [9] is used. The one which
produces the smaller bounding box is then chosen,
since generally a smaller bounding box means that the
orientation is better estimated.

• A set of uniformly distributed views is taken from every
one of the 18 vertices of a regular 32-hedron. Every
view has a binary image, which contains only silhou-
ettes, and depth images, where the pixel intensities are
proportional to the distance of the 3D object.

• 2D functionals are computed for each view. Concretely
the 2D Polar-Fourier Transform, the 2D Zernike Mo-
ments and the 2D Krawtchouk Moments. All the de-
scriptors for a single image are put together in one
feature vector.

• The matching is carried out by summing up all the
distances of the features vector. The query object is then
classified into the class which is closer.

The advantages of this method are manifold. It is robust
with respect to the objects’ level of detail, it provides an
unified framework for multi-modal queries and its discrimi-
native power has been shown to be high.

C. Public On-line Sources for Object Recognition

Using public on-line image datasets to facilitate tasks such
as object detection and scene recognition has been met in a
number of approaches over the past few years ([10]-[12]).
The general idea in these approaches is matching the input
image with similar images from public datasets. Indicative
datasets used for this purpose are the ones in 80 Million Tiny
Images [13] and ImageNet [14].

Recently, large on-line repositories of 3D data such as
Google 3D Warehouse have launched [15]. Such resources
together with the advent of RGB-D cameras have turned a
part of scientific community towards studying recovery and
representation of 3D geometry information of real world
objects ([16]-[18]). As 2D approaches based on retrieving
similar images have proven their value in scene interpretation
([10], [13], [19], [20]), it can be inferred that similar tech-
niques based on geometric features could be equally effective
for 3D scene interpretation tasks. In fact, the motivation for
such techniques is the same for 3D models as for images:
the sizes, shapes, orientations, locations and co-occurrence
of objects in real world environments are not arbitrary, but
rather constrained in ways that can be represented given
enough data.

A number of approaches in the graphics community utilize
data from online repositories such as Google 3D Warehouse,
in an effort to perceive and model how objects are typically
arranged in homes ([21], [22]). Moreover, the vision commu-
nity has begun using 3D Warehouse data to learn about the
geometric properties of objects [23]. Additionally this data
have been used to facilitate the classification task for 3D to
3D matching with laser scans [6].

D. Context in Object Recognition

Context powerfully influences how humans act and un-
derstand things. However, whilst contextual objects and



relationships facilitate object perceptions for humans, in
computer vision co-occurrence relationships or, in general,
contextual information have not yet been fully exploited and
there are algorithms in which contextual objects serve rather
as nuisances that may worsen the performance of an object
detection task.

The idea of using context relies on the fact that cer-
tain objects typically occur in specific environments or are
likely to be near or in specific relation to other objects.
So, a natural way to represent the context of an object
is to describe relationships with other objects. There is a
number of research efforts in computer vision that explore
how contextual relationships may improve object search and
retrieval efficacy, especially in indoor environments which
is relevant to the topic discussed in this paper ([24], [25],
[3]). Most of these approaches rely on handcoded statements
describing relations or constraints, e.g. “Sea is under Sky”
or “A Sofa is on top of the Floor”. An example of such
technique is presented in [24], where spatial information
about the environment and conditions between entities are
represented using Horn clauses. However the performance
of such approaches decreases a lot in case of noisy data and
unknown environments.

An alternate way to utilize contextual cues in vision
problems is to exploit local features statistics, in order to
identify real world scenes (global context) and then place
attention on specific scene areas in which the object is most
likely to be found ([26], [27]). An empirical study of context
in object detection is presented in [28], where the authors
attempt a classification of context sources (i.e. semantic,
geographic, temporal, cultural, 3D Geometric context, etc)

Recently, there has been an increasing interest by the
research community towards approaches that utilize social
data information as context for object search and retrieval
tasks. Specifically, a number of works have addressed the
problem of identifying photos from social tagging systems
that depict a certain object, location or event ([29]-[31]).
In [29] they analyze location and time information from
geotagged photos from Flickr, in order to track tags that have
place semantics (i.e. they refer to an object in a restricted
location) or event semantics (i.e. they are met in specified
time periods). Then, they employ tag-based clustering on
these specific tags, followed by visual clustering, in order
to capture distinct viewpoints of the object of interest. The
same authors in [32] combine tags with content analysis
techniques, in order to get groups of music events photos.
Likewise, in ([30], [31]) the authors use various modalities
of photos (i.e. visual, textual, spatial, temporal proximity),
in order to get photo collections in an unsupervised fashion.
Another approach towards this direction, that deploys the
visual annotations, also known as “notes” in Flickr is de-
scribed in [33], where it is shown that the image retrieval may
improve significantly by combining tags and visual analysis
techniques. Apart from the obvious retrieval application, the
outcome of these methods can be used for training of concept
detection algorithms, as shown in ([34], [35]). The advantage
of using social sites like Flickr is that we can obtain a

high number of contextual relationships without spending
much effort or time. Consequently, as opposed to supervised
approaches, there is no limitation on the types of objects
that can be trained, since social sites accommodate images
depicting a huge variety of objects.

III. SYSTEM ARCHITECTURE
In order to confront with the problem of object and room

recognition in indoor environments we intersect and exploit
three different sources of information: object and scene co-
occurrence probabilities extracted from social media (cf. III-
C), real world Microsof Kinect data and 3D CAD models
from the web (cf. III-A). In subsection III-B it is described
the construction of a 3D object classifier without using color
information, then follows the extraction of co-occurrence
probabilities (subsection III-C) and finally we combine them
in order to build a Markov Random Field model and a more
accurate probabilistic classifier (subsection III-D). Figure 1
depicts the structure of the whole system architecture.

A. 3D CAD models and Kinect data acquisition
1) Self-recorded Data Set: The self-recorded dataset was

acquired using a Microsoft Kinect camera. We placed the
objects in front of the camera without physical proximity
with other objects for more accurate segmentation and ro-
tated them in order to get several viewpoints of the same
object. For each object we got between 10 and 15 shots,
depending on its size and symmetrical complexity.

Our classifier is limited to recognize 4 different classes of
objects: sofa, chair, table and cupboard. 1 Each class consists
of a set of different viewpoints shots from 3-4 different
objects, namely a set of partial 3D views without RGB
information. Examples of the views for one of the chairs
is shown in Figure 2.

1In the general class cupboard we include similar objects like bookcases.

Fig. 1. Schema of the proposed sytem architecture.



Fig. 2. Picture of the real chair and the 10 different views obtained from
it.

2) Online 3D models: The 3D CAD models were down-
loaded from an online database 2 by querying the 4 types
of objects that the classifier recognizes. Figure 3 shows
some examples of 3D chairs acquired from the above source.
The size of the dataset varies depending on the experiment
executed (cf. Section IV for more details).

B. 3D object classification

Our classifier is based on a classical pipeline of seg-
mentation (in case of real-world data), features extraction
and categorization using Euclidean distance and a nearest
neighbour approach.

Due to the different character of the data, the classifier
should take into account the artificial nature of the online 3D
models as well as the lack of information, due to occlusions,

2http://archive3d.net, but any other database can be used.

Fig. 3. Three of the 3D CAD models of chairs obtained from the Web.

for the Kinect-based data. A set of normalization steps are
essential for a fair comparison. Our method uses the feature
extraction algorithm in [4] described in more details in
Section II-B. For each 3D model set of 18 distributed uni-
formly views were sampled. The output of the algorithm is
a 156-length feature vector. Finally, each object is classified
according to its closest neighbour.

C. Utilizing object/object and object/scene context

This work concentrates on social media and their potential
to serve as training sources in an object detection scheme.
Social sites like Flickr, accommodate image corpora that are
being populated with hundreds of user tagged images on a
daily basis. We are interested on whether such corpora can
be leveraged to learn contextual relationships among objects
and incorporate them into an object detector.

Specifically, here, we focus on Flickr and we treat each
image as a vector of tags. Representing images in a latent
semantic space captures the correlation between tags and
allows hidden relationships to emerge; for example, if tagA
and tagB co-occur in a large portion of images they can be
mapped to a common latent dimension. We track such latent
pairwise relationships by finding matching tag pairs within
image annotations and extract tag co-occurrence statistics.
We utilize these statistics to predict the likelihood of observ-
ing an object oi given the object oj , as follows:

P (oi | oj) =
imgoi,oj∑
ok
imgoi,ok

(1)

where the numerator expresses the number of images that
tags i, j co-occur and the denominator equals the appearance
frequency of tag i with any other object category.

As a source of semantic information for deciding object
categories pertaining to indoor environments automatically,
we employ the lexicon WordNet. WordNet stores English
words organized in hierarchies, depending on their cognitive
meaning, and we utilize it to get in an automatic fashion
English terms referring to rooms, objects and furnitures.
In order for the contextual information to be useful, the
extracted co-occurrences and terms should be a good rep-
resentation of different indoor environments. This can be
confirmed in Section IV, where we compare with the co-
occurrences of a large and challenging dataset.

D. Probabilistic classifier

The last step of our method is to combine the co-occurence
probabilities from social media sources with the 3D object
classifier’s accuracy in order to create a Markov Random
Field (MRF) model similar to the one in [36] for enhanced
object recognition as well as novel object and scene estima-
tion.

More specifically given a set of M segments sj extracted
from the scene and N classifier’s detections on those seg-
ments ci, where M ≥ N , we want to maximize the following
term:



P (sj |c1, c2, ..., cN ) =
1

Z

∏
j,k∈M

ψ(sj , sk)
∏

j∈M,i∈N

φ(sj , ci) (2)

where ψ is the likelihood of two objects co-occurring, φ
the classifier’s class-wise accuracy and Z a normalization
term. An important consequence that arises from formula 2
is that one of the sj can be a novel object, that is an object
outside of the fixed number of classes that the classifier
recognizes.

Furthermore, after estimating sj , the power of automatic
contextual information extraction aids us in estimating the
scene or room in an indoor environment, since scene esti-
mation can be seen as a co-occurrence probability of the
scene co-occurring with the objects recognized. This can be
done by modifying the above formula and adding one more
term scene in the query set, namely:

P (sj , scene|c1, c2, ..., cN ) = 1
Z

∏
j,k ψ(sj , sk)

∏
j,i φ(sj , ci)

∏
j,scene ψ(sj , scene) (3)

where j, k ∈ M and i ∈ N . In conclusion, by using
contextual information the model becomes flexible enough
so as not only to enhance the known classes’ recognition,
but also obtain a belief about novel observed objects and
locations.

IV. RESULTS

In order to evaluate the performance of the proposed
system, we carried out 2 different experiments. The first one
regards the 3D classifier’s recognition accuracy, whereas the
second tests the quality of contextual information that we
automatically extract from Flickr.

In the first experiment, we used 4 different classes of
objects (chairs, tables, cupboards and sofas), as well as
Internet-derived 3D CAD models from archive3d of the
same classes. Every view of the self-recorded objects is
considered as different object. We tested and trained upon
different datasets. The confusion matrix in Table I shows the
recognition’s accuracy for each combination of training and
testing.

We observed that training with only one type of data
(kinect data only or web 3D models only) gives unstable
results, especially when testing on other type of data. The
best recognition outcomes arise after combining real-world
data with web 3D models. This fact encourages us for
complementing real-world datasets with online models in
order to create multi-varied training sets and end up in more
robust recognition.

Another interesting question that we wanted to answer
is if we have a small self-recorded dataset, how much the
augmentation of the 3D models would help in the recognition
phase. For that reason we tested on our kinect database and
then started to augment our training set with 3D models. In
Figure 4 two different curves are showed:

• The red curve shows the recognition accuracy using
only 3D models as training and augmenting them.

TABLE I
CONFUSION MATRIX USING DIFFERENT DATASETS AS TRAIN AND TEST

SETS.

PPPPPPTrain
Test kinect web 3d kinect + web 3d

kinect 0.93 0.59 0.69
web 3d 0.68 0.90 0.83
kinect + web 3d 0.88 0.90 0.90
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Fig. 4. Comparison of the object recognition accuracy between the classifier
trained with self-recorded data and 3D CAD models and the one trained
only with 3D models. Testing on the self-recorded data.

As expected the recognition accuracy rises and gets
balanced around 70%.

• We keep a fixed number of kinect data as training
set and we augment with 3D models. The system
is not affected too much by that augmentation and
shows stability as expected from the confusion matrix
in Table I.

The second experiment tests the reliability of the co-
occurrences probabilities computed from the web. In order
to learn the co-occurrence probabilites, a FLICKR-derived
database was used as detailed in Section III-C. To test the
quality of the learning, the co-occurrence probabilites have
been also computed from the Berkeley’s Kinect-based 3D ob-
ject dataset [37], which contains daily scenes, house rooms,
office, etc. The FLICKR estimation is based on 351772
pictures containing 502 different terms (object classes) and
the Berkeley’s database is composed by 849 scenes with 83
different terms.

In Figure 5 a comparison between both co-occurrence
probabilities distributions is shown for 6 different terms.
This comparison shows that the co-occurrence probabilities
distributions are similar for both databases. In spite of the
very different purposes of the databases, the fact that both
distributions are similar is remarkable. The objects of the
Berkeley’s database were manually tagged with scientific
purposes. Whilst, FLICKR-derived database tagging is not
strict since the pictures are tagged by the users who upload
them, without following a common criteria in this process.
The main conclusion of this comparison is that FLICKR can
be used as a reliable source of context information, regardless



the automatic nature of our terms extraction.Charts
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Fig. 5. Distributions of objects’ co-occurrences probabilities in Flickr
(orange) data and Kinectdata.com’s (blue) database.

V. DISCUSSION AND FUTURE WORK

Traditional object recognition algorithms utilize objects’
geometrical features in order to detect and categorize into
different classes. However, several issues arise with these
approaches, that we attempt to solve by introducing two
novelties.

Firstly, there is a need for a labelled dataset of adequate
size. The process of selecting and annotating big datasets
is time-consuming and also hides always the possibility
of limiting the recognition to specific environments and
restricted conditions. We attempted to solve the size and
annotation problem of the datasets by self-recording several
objects and also downloading web 3D models from an online
source. Afterwards, the features extraction phase followed for
each object based on [4]. A nearest neighbour approach and
euclidean distance was used for the final classification.

Secondly, in recent years, the object recognition com-
munity has realised that judging only from shape or color
characteristics is not enough for robust results in real world
situations. Occlusions and other environmental distortions
affect the sensory perception of the robot making different
objects look similar and hence any recognition task impos-
sible. For that reason, we utilized context retrieved from
social media websites and modelled them using markov
random fields. The resulting classifier was probabilistic and
has shown higher robustness and flexibility in relation to our
initial 3D model based.

Regarding the integration of our system in a moving
robot, we plan to incorporate one more active perception and
learning step, especially on occasions where the robot meets
unknown objects. That step is going to close the learning
loop by re-training and extending the classifier. However, in
order to attain smooth collaboration with humans, the support
by a voice recognition software is essential. We further aim

to test the resulting system against Internet-sized databases
in order to provide an insight about its transferability.

Another interesting research direction for a robot that un-
derstands its environment, is to find optimal paths depending
on the task that it wants to accomplish. For that reason, we
plan to incorporate advanced navigation algorithms as well as
information by other robots and media around for additional
context. This is the last and necessary step before actually
carrying out tasks in the real-world.

VI. CONCLUSION
For robots to be able to fluidly collaborate with and keep

company to humans in indoor spaces, they need to be able to
perceive and understand such environments, including furni-
ture and rooms. Towards that goal, we presented a system for
indoor furniture and room recognition for robots, which has
two significant novelties: it utilizes internet-derived as well
as self-captured models for training, and also uses object-
and room-context information mined through the internet, in
order to bootstrap and enhance its performance.

We have utilized silhouette-based features of Daras et al.
[4] and a nearest neighbour approach for object recognition,
and finally markov random fields for modelling object-object
and object-scene context. Furthermore, in our approach we
also used Internet-derived 3D models from archive3d and
internet-mined co-occurrence probabilities through Flickr.
Thus, the system also acts as an example of how autonomous
robot entities can benefit from utilizing online information
and services. Many interesting subproblems, including the
peculiarities of utilizing such online sources, were discussed,
followed by a real-world empirical evaluation of the system,
which showed highly promising results.
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