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Abstract— Experimental evaluation of navigation algorithms
requires physical robots as well as position sensing devices.
The common alternative is to use simulations to run the
experiments. However, simulation often does not provide an
accurate prediction of real-world behavior. Therefore, in this
paper, we present an innovative approach towards evaluation of
navigation algorithms, which does not need physical robots and
position sensors to be present at the experimenter’s site, but
relies on a special remote internet-accessible physical testbed,
the “Teleworkbench”, which can be used in order to evaluate
as well as uniformly cross-compare algorithms with no need
of spending money on hardware or simulation software. More
specifically, in this paper we are using the Teleworkbench to
evaluate three different path planning algorithms, and compare
it with simulation. Different metrics are proposed, such as the
path execution time, smoothness and path clearance deviations.
Our results clearly illustrate the superiority of the Telework-
bench as an evaluation platform in comparison to simulation,
which does not provide an accurate prediction of actual physical
performance, and thus illustrate both the viability as well as
the power of our novel approach.

I. INTRODUCTION

Traditionally, experimental evaluation of navigation algo-
rithms requires physical robots, as well as position sensing
devices, to be available at the experimenter’s lab. As an
alternative, many authors have used simulation in order
to run such experiments. However, simulation often does
not provide an accurate prediction of real-world behavior.
Therefore, in this paper, we present an innovative approach
towards evaluation of navigation algorithms, which does not
need physical robots and position sensors to be present at the
experimenter’s site, but relies on a special remote internet-
accessible physical testbed, the “Teleworkbench” [1], which
many remote experimenters can use in order to evaluate as
well as uniformly cross-compare their algorithms with no
need of spending money on hardware or simulation software.
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One of the first attempts to come up with a benchmark
definition in path planning is given in [2]. Many benchmark
for motion planning have been already proposed, but these
approaches are very dependent on the family of algorithms:
probabilistic planners [3], humanoid problems [4], GPU-
based algorithms [5] and so on. Recently, a generic sim-
ulation infrastructure has been proposed for benchmarking
mobile manipulators path planning algorithms [6].

In spite of all these efforts, the benchmarks never go
further than simulations. Benchmarking with real robots
could be a very complex, time-consuming task and the per-
formance is not comparable among robots and implementa-
tions, because control parameters can highly influence on the
results. Why is benchmarking in real robots important? There
are factors that simulations can hardly take into account:
perturbations (both spatial and temporal), deviations due to
errors, noise, etc. Some metrics such as plan execution time
or deviations between real and simulated plans are required
in order to check the reliability of the different algorithms.
The path following and control algorithm for the real robot
play a very important role in this benchmarking, and also
other subsystems of the robot, such as localization, odometry,
etc.

The Teleworkbench (TWB) offers a controlled environ-
ment in which users in any location can execute, test,
and compare their algorithms and programs using real
robots. The TWB also provides functionality for assisting
researchers and developers in several aspects of experimen-
tation using robots: (i) integration with a robot simulator,
(ii) download and execution of users’ robot programs, (iii)
automatic environment building, (iv) data logging, (v) posi-
tion tracking of up to sixty-four robots, and (vi) a visual-
ization tool for experiment analysis. As experiments run in
a controlled and repeatably rebuilt environment, researchers
can reproduce and compare the results of the experiments.
In this paper we are using the Teleworkbench to evaluate
three different path planning algorithms, and compare it with
simulation. The paths are computed offline in a priori known,
static map. Therefore, the scope is to evaluate the planning
algorithms independently, without taking into account on-
board sensors of the robots. The position of the robots is
provided by the TWB.

The paper is organized as follows: Section II describes
the architecture we propose for remote experimentation of
navigation algorithms. In Section III the complete setup
of the simulation and experiments is detailed. The results
are shown in Section IV. Finally, in Section V the main
conclusions of the paper are outlined.



II. SYSTEM ARCHITECTURE

On the design, we focus on the point of view of the
user who wants to test a path planning algorithm. The most
desirable characteristic is that the experimentation procedure
should be fully transparent for the user. In this way, the user
uploads a program to the Teleworkbench Server containing
the path planning algorithm and can execute it remotely,
as shown in Figure 1. The user only has to care about
the environment dimensions adaptation and to output the
computed path in a specific format: a string sent via TCP/IP.

This string can be received by the robot controller, which
subsequently communicates it to either the Player/Stage
simulator [7] or the robots in the Teleworkbench. When the
message with the path is received, the robot localization and
path execution is done automatically. While the experiment
is running, the user is able to follow it thanks to video
streaming. Once the experiment finishes, a log is created
in which different data are collected such as robot positions,
sensor data, execution time, etc.

In the following, we describe the different modules of the
implemented architecture.

A. Path Planning - User

This module encapsulates the path planning algorithm and
all the additional steps which are necessary for the computa-
tion of the path: environment adaptation, path trimming and
conversion, etc. The user of the Teleworkbench only has to
deal with this module since it depends completely only on
the algorithm.

Any path planning algorithm can be used, in any pro-
gramming language as long as the TCP/IP output satisfies
the established format (as described in Figure 1, we have
used Matlab compiled code in this paper). The focus of the
proposed architecture is mobile robot navigation. Hence, 2-
dimensional planning should be done, or 3-dimensional if
the heading angle θ is wanted to be include in the planning.
Depending on the algorithm employed, previous steps could
be required. For example, when running algorithms in which
the robot is taken into account as a point with no dimensions,
it is recommendable to dilate the obstacles of the environ-
ment by the radius or the robot. Otherwise the robot will
collide.

Once the path is obtained, it has to be adapted so that it can
be sent via TCP/IP commands to the robots. This adaptation
applies, for example, path trimming (uniform sampling of
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Fig. 1. The deployment diagram of the experiments with Stage simulator
or BeBot minirobot.
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Fig. 2. The diagram showing the general system architecture of the
Teleworkbench system.

the path so it is not necessary to send all the points of the
path), heading computation for every point of the path (if
required), and so on.

B. Teleworkbench

The distributed system architecture of the Teleworkbench
is shown in Figure 2. Earlier papers [1], [8] describe the
Teleworkbench System in more detail. In this paper, we will
briefly describe the system and its main components.

The Teleworkbench comprises a main experiment field
of 3.6×3.6m that is partitionable into four sub-fields, each
of which can be used for an experiment independently. A
gripper module with four degrees of freedom (3 translational
and one rotational) enables automatic environment building
by using plastic blocks. Additionally, it can also be used
for placing robots at predefined locations and orientations.
Three different robotic platforms are currently supported
by the Teleworkbench: Khepera II, Khepera III [9], and
the BeBot [10]. Five 1-megapixel Gigabit-Ethernet cameras
are mounted above the experiment field, four of which are
assigned to the sub-fields and the other one monitors the
entire experiment field. Each camera is connected to a video
server that processes the video data to provide the GPS-
like position and orientation information of the robots as
well as to record and stream the video. Currently, up to 64
robots can be identified and tracked by means of barcode-
like markers that are placed on top of the robots. One server,
called the Teleworkbench Server, is responsible for schedul-
ing, queuing and execution of experiments. Additionally,
the server handles wireless communications among robots,
e.g. with Bluetooth or WLAN. Another server is assigned
for intermediating users and the Teleworkbench System. A
website is provided to support users in performing different
activities, e.g. experiments setup and execution, experiment
data acquisition, or live-monitoring. A file server is deployed
to store all data that accumulates during experiments.

The Teleworkbench aims to provide a seamless transition
from simulation and experiments with real robots. The same
environment model that is used in the simulator can be used



for the experiment. When the experiment is set and ready, the
defined environment model is realized by using plastic blocks
arranged by the gripper module. Afterwards, the uploaded
programs are deployed and executed.

During experiments, the communicated messages among
agents are logged and can be retrieved after the end of
the experiment. At the same time, users can also observe
the experiment using the developed graphical user interface
(GUI) that can display the streamed live-video overlaid by
some robot information such as robot symbol, robot path,
sensor information, and exchanged messages (see Figure 3).

C. Robot Platform

The experiments and simulations detailed in this paper are
carried out with BeBot minirobots [10].

The robot controller uses a modular and flexible robot
software architecture (see Figure 4), which is based on the
schema-based architecture of Arkin [11]. This architecture is
a reactive one, in which multiple concurrent processes called
motor schemas generate the desired action. Each motor
schema is responsible for a certain behaviour represented
by a vector, whose value and angle corresponds to the
speed magnitude and orientation respectively. The developed
robot software architecture provides an abstraction of robot
controller, which allows the use of different robot controllers.
Additionally, the robot software architecture is composed of
modules, each of which realizes one specific functionality.
For this study, the robot controller contains one path follower
schema that enables the robot to traverse a given list of
positions.

A server is also deployed on the robot to provide access
to the robot, e.g. to send commands to the robot. A
robot communication protocol has been defined, consisting
of a list of commands that the robot supports. The
command that is of interest in this study is the one for
sending a list of points that the robot has to traverse:
T, T, P, px1, py1, pa1; px2, py2, pa2; ..., pxn, pyn, pan,
where pxn,pyn, and pan are the position (x and y) and the
orientation (pan) of the target point.

D. Simulation Server

A simulation server is deployed to support simulation of
the robot controller before executing it on the BeBot. The
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Fig. 3. The GUI for online analysis tool. The API is used to communicate
with the Teleworkbench System as well as with the robots.
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server runs a Linux operating system with the Player/Stage
robot simulator [7]. One robot server with access to the
aforementioned robot controller is also deployed on the same
machine. As in the case of the server running on the robot,
this robot server is also programmed to receive the same
commands, e.g. the robot path. The command will be sent
to the robot controller, which in turn translates it to the
command understood by the Stage simulator.

III. SIMULATION AND EXPERIMENT
DESCRIPTION

The proposed benchmarking architecture contains three
different steps: computation, simulation and experimentation.
The first stage, computation, comprises the path planning
algorithm as detailed in section II-A. In our case, this is
done with Matlab compiled packets.

The TWB supports the interoperability with the Stage
robot simulator. Depending on the IP address specified in
the previous step, the path will be simulated or executed in
the TWB. During our experiments, we simulated the paths
in order to verify for any problem before proceeding with
real experimentation.

Finally, the last stage is the experimentation with BeBot
minirobots in the TWB. During the experiments, all the
necessary data for the metrics detailed in the previous section
are recorded.

The experiments comprise a total of 24 real trajectories.
Two different environments are used: a room like environ-
ment and one with blocks and several intersections, as shown
in Figure 8. Two different plans (set of start and goal points)
were requested in each environment. Also, for each plan,
three different path planning algorithms have been used.
Finally, each path planning algorithm was executed twice.

The path planning algorithms chosen are the Fast March-
ing Method (FMM), Fast Marchig Square (FM2) [12] and
Probabilistic Road Maps (PRM) [13], implemented with the
Robotics Toolbox [14]. These algorithms were chosen since
they are characteristically very different from each other.
FMM provides optimal paths in terms of distance, but with
sharp curves and runs too close to obstacles. Paths computed
with FM2 are very smooth, but longer. And PRM provide



stochastic paths which are not smooth but is faster in high-
dimensional spaces.

A. Metrics Employed

The metrics we have included in this paper are those
related to the execution of the path and to the comparison
between the computed path P0 and performed path Pr

(performed in the simulation as well as in the TWB):
• Path execution time - The time t (in s) the robot took

to follow the path from the initial given point until the
target is reached.

• Path deviation (error) - Path deviation ep (in mm) is
measured by dividing both paths into n points. For each
point of initial path another one is chosen on the real
path. This point is chosen so that the Euclidean distance
dE (error) is minimum.

• Path smoothness - The smoothness κ′ can be measured
in many different ways. We will use the smoothness
metric given in [6], which represents the standard devi-
ation of the angles along the path. Let αi be the angle
between two consecutive segments of a path divided
into m segments. Therefore, κ′ =

√
1

m−1
∑m

i=2 α
2
i . The

angle taken into account is illustrated in Figure 5.
• Path length - The path length l is approximated by

dividing the path into n points P = 〈p1, p2, ..., pn〉 and
computing l =

∑n−1
i=1 dE(pi, pi+1), where dE stands

for the Euclidean distance.
• Minimum Obstacles clearance - The metric dn con-

tains the deviation of the minimum distance of the
points along the path to the closest obstacles of the
environment.

• Average speed - This metric (given in m/s) is computed
as follows: v = lr/t.

IV. RESULTS

Graphs in Figure 6 show the results of the simulation
with Stage robot simulator and the experimentation with
the Teleworkbench in terms of the metrics described in
section III-A. In path deviation we also calculate a direct
comparison between the results of Stage simulation and the
Teleworkbench.

In Figure 7 the results for smoothness, clearance and path
length are shown as the ratio with regards to the initial, com-
puted path. The objective is to show the deviation between
the computed and performed paths (in both simulations and
real executions).

Many interest conclusions can be extracted from the
results. First, the duration of the real path executions in
the TWB take longer than in the simulated environment
(Figure 6 a)), so the average velocity is lower in real
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Fig. 5. The angle between two consecutive segments of a path.

experiments (Figure 6 b)). Moreover, the variation is not
constant along the algorithms. Also, the path deviation in
real experiments is higher than in simulation (Figure 6 c)).
However, in this case the variation among algorithms is
almost constant. The results with the minimum clearance
follow the same pattern (Figure 6 d)).

It is interesting that the path length deviation (Figure 6
e)) shows similar results in simulation and in real experi-
ments. Finally, regarding path smoothness (Figure 6 f)), the
controller is not able to reproduce the paths as smooth as
planned. The most interesting point here is that the less
deviation between simulation and TWB occurs with the PRM
algorithm, where the smoothness is lower.

Focusing on the ratios with the initial path, Figure 7, the
main conclusions can be extracted. The real experiments
always reported worst results than the simulation: path length
ratio is always over 1, which means that it has increased, and
path length and smoothness are decreased. There is only one
exception, the smoothness of the PRM algorithm is improved
in this case. This is because the implemented controller is
not able to follow the sharp curves which a PRM path is
characterised for.

Therefore, the main conclusion of the result is that the
simulation of path planning algorithms is useful, but bench-
marking with results obtained only through simulation is not
enough. The application of the different algorithms in the
real world can have different results than those provided in
simulation. This is a known problem: simulations can be as
close to reality as desired, but to represent all the external
factors that influence the real performance is very complex
(and most of the times not worthy) task. Also, the main
problem that arises when executing algorithms in real robots
is that the deviations between simulations and real world are
not constant, as shown in the results of this paper.

Figure 8 shows the computed, simulated, and TWB-
generated robot path generated by the three algorithms in
two different environment configuration. The results show
that the simulated and TWB-generated paths are close to
the computed one. However, some overshoots are visible
which results from the inability of the P-controller used in
this study to keep the robot always on track. This issue
is more prevalent in the results of the Teleworkbench. The
experiments in the Teleworkbench produce longer robot path,
as is shown in the path length graph of Figure 6.

In Figure 9, we can see the snapshots of the same
experiment running in the Stage simulator and the TWB.
The robot path is overlaid on the picture as well as on the
video. Using the Teleworkbench GUI, this can be done either
online (during runtime) or offline (after the experiment).

V. CONCLUSION

In this paper we have introduced a novel architecture
to remotely test and benchmark path planning algorithms
using the Teleworkbench. Six different metrics have been
proposed in order to take into account the quality of the
implementations of path planners into real robots.
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Fig. 9. The snapshots of the experiments running on Stage simulator and
the Teleworkbench. The path of the robot is embedded on the video using
the Teleworkbench GUI.

This infrastructure allows people around the world to test
a path planning algorithm very easily, without spending a lot
of efforts for implementing the algorithms in real robots and
dealing with the typical implementations problems.

Results show that when dealing with the implementation
of path planning algorithms in real robots the metrics ob-
tained in simulation are not completely valid in the real
world. Although this is highly dependent on the control
strategy employed, if the same controller is applied in all
the experiments similar results are expected.

For example, in our case the controller is not able to follow
such smooth paths as those given FM2. However, this is not
a problem since the paths computed with FM2 have a higher
average speed than those computed with FM or PRM. When
benchmarking path planning algorithms in simulation, these
issues are not usually taken into account, but they can be
very important in the real applications.

This infrastructure is also valid for testing and comparing
path following algorithms and motion controllers. In that
case, using the same path planning algorithm the same
metrics can be employed in order to compare the quality

of the controllers.
The future work focuses on including more algorithms to

the test and extends the benchmarking to other algorithms
such as multirobot path planners and planning with dynamic
obstacles. Also, the proposed schema is applicable to bench-
mark the influence of sensor noise and inaccuracies of the
control in the paths. In addition, it could be interesting to
compare the performance of the sensor models in simulation
with the real sensors.
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