
Adaptative Evolution Strategy for Robotic
Manipulation
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Abstract—Teaching a mobile robot to complete a task and to
reproduce it is possible, but as the robot tries to replicate actions
natural events as a wheel-slide would feed in inaccuracies on the
localization of the robot mobile base, and it may be difficult to
succeed replicating. Robot tasks can be represented as trajecto-
ries compound by a series of poses and movements. We propose
an algorithm for adapting manipulation trajectories to different
initial conditions from those of the learned assignment. The
adaptation is achieve by optimizing in position, orientation and
energy conservation. Manipulation paths generated can achieve
optimal performance sometimes even improving original path
smoothness. The approach is builded over the basis of Evolution
Strategies(ES), and only uses forward kinematics permitting to
avoid all the inconveniences that Inverse kinematics imply as well
as convergence problems in singular kinematic configurations.
Experimental results are presented to verify the algorithm.

I. INTRODUCTION

Mobile manipulators combine a robotic manipulator with a
mobile base and its purpose is to offer support in complicated
tasks involving manipulation of tools or objects within human
environment; to accomplish they must localize their base in a
place where manipulation is possible, trigger the servomotors
within manipulator links to place the end effector and finally
perform a predefined task.

In order to accomplish a task, inverse kinematics are
required to determine manipulator configurations given an
endpoint position and orientation coordinates. Usually, approx-
imated numerical methods are used to solve inverse kinematics
due to the complexity and sometimes indeterminacy of analyt-
ical solutions. Many numerical methods have been proposed;
the most common methods are based on the Newton-Raphson
method [1], [2] and the damped least squares method [3],
[4], but these methods have convergence problems in singular
kinematic configurations because of their dependence on the
Jacobian Matrix. Another manner of solving the problem
consist on formulating the inverse kinematic as a constraint
optimization problem. This way all singularities are avoided
by only using the forward kinematics. In order to solve this
optimization problem, several methods have been proposed,
from classic methods like conjugate gradient and the Cyclic
Coordinate Descent [5], to artificial intelligence methods as
neural networks [6]–[11], Fuzzy Logic [12]–[16] and evolu-
tionary algorithms [17]–[19].

Evolution Strategies (ES) have proven being robust and
versatile by not depending on any continuity or derivability
condition and being successfully applied in various disciplines.
Never the less, as mentioned in [20], many works consider
only the position error, while calculate orientation error using

analytical methods. In [20] Differential Evolution is used to
find an optimal path of manipulation, but the algorithm far
from being real-time, requires a large amount of time and
mobile base disturbance is not considered, thereby the robot
base stays still at the same place where learned path was made
while only arm pose changes. In our previous work [21], we
proposed a time constrained algorithm with a minute period
term, but manipulation path smoothness was not considered
and computation time could be reduced.

The objective of this work is to adapt from a different
location a mobile robot manipulation path using an Evolution
Strategy. A system is said to be real-time if the total correct-
ness of an operation depends not only upon its logical cor-
rectness, but also upon the time in which it is performed [22].
Tasks considered here include reaching tools and objects; we
considered these tasks to have a five seconds tolerance term.
This rule permit us to said that the algorithm is performed in
real time as long as the tolerance time is not outperformed,
operations completed after its deadline are considered useless.

Given a manipulation task in configuration space described
by an end effector path in Cartesian space with a specific
position and orientation of the robot base, a new path of ma-
nipulation is generated in real-time using a modified approach
of the basic Evolution Strategies scheme, assuming different
initial conditions from that in the learned path.

The modified Evolution Strategy (ES) here implemented
uses criterions as simple as possible, minimizing computa-
tional burden, and reaching fast optimal results that coherently
describe a manipulation task.

After a defined task manipulation path is obtained, the prob-
lem arrives when trying to replicate it. In mobile robotics, lo-
calization error is a recurring problem caused by imperfections
present in floor surfaces and robot’s hardware, making wheels
slip among other errors [23]; in consequence robot bases rarely
ever would situate in the exact same position and orientation
where tasks were learned. In spite of that, determine correct
robot placement it’s possible through measure equipment such
as lasers and 3D cameras. Once the new location is determined
we proceed to apply an evolutionary algorithm to adapt a
learned path to a new sequence that performs the original task.

This paper presents in section II the manipulation path
adaptation problem. Section III describes the used evolution
strategy with some modifications to the original scheme.
Finally we show experimental results obtained by testing the
algorithm on the robot MANFRED.



II. PATH EVOLUTIVE ADAPTATION PROBLEM

For a mobile manipulator a task may be defined as a
sequence of points in the Cartesian space defining a path. This
sequence of joint configurations is defined as [20]

Ωl = {~qk}, k = 1, 2, . . . , N, (1)

where ~qk ∈ <n is a vector of joint variables qk,j ,

~qk,j = (qk,1, . . . , qk,j , . . . , qk,n)T .

We assume a given path Ωl which describes the robot’s goal
or task, this path may be obtained by learning methods based
on imitation, teleoperation or teaching techniques. After a
displacement, the initial location of the robot base is different
but near from that of Ωl, this path must be adapted to the new
location to complete the desired task.

By optimizing the end effector’s position and orientations
errors a new path is obtained for a predefined task. The
trajectory is soften by considering the energy consumption,
and it is determined by the sum of the manipulator joints
displacements as

ζ(Ω) =
1

2π

N∑
k=1

|~qk − ~qk−1| (2)

In evolutive methods the step length is the disturbance intro-
duced to design variables in order to change and evolve them
from initial to optimum positions, this variation parameter
is denoted by σ. In manipulation planing, the end-effector
position can be changed in only one axe with a movement,
while for orientation axes are hard coupled, varying all or
at least two simultaneously when a rotation over an axis is
executed. This makes orientation optimization harder and more
computational time consuming than that of position, due to
small changes in position could generate large variations in
orientation. To overcome this problem, position minimization
is first made with a large step length σhi approximated to
that proposed by [24] and after position optimization target
is reached, orientation minimization is added to optimization
with a ten times smaller step length σlow. This strategy results
in improved convergence time of the algorithm.

Rechenberg’s success rule is used for controlling σ size,
[24]. After every Nb (number of design variables) iterations,
the number of successes occurred over the preceding 10Nb
mutations are revised. If this number is less than 2Nb, step
size is multiplied by a factor of 0.85, or divided by 0.85 if
more than 2Nb successes occurred.

For the initial values of σ, Schwefel proposes to use the
following estimation

σ0
i =

∆bi√
Nb

where ∆bi is the expected distance from the optimum for
the corresponding design variable. Notwithstanding as the
accuracy for this initial σ value is not critical because the law
of success seems to quickly adapt the step size, a generalized
form is deduced to approximate initial Schwefel values

σ0
i =

∆dqN
10(Nb + 1)

(3)

where ∆dqN is the last node distance error in millimeters.
Value obtained here approximates experimental results average
of Schwefel estimations that made no significant differences
on convergence times respect to that of the exact estimation.
When optimizing orientation, step length in (3) is reduced by
a factor of ten.

To determine an appropriate size of the parent population µ
there is no accurate rule. A good indicator is to have as many
or a few times as many members as the number of design
variables; parent population size used here is Nb = 6.

On the contrary, some theoretical studies have been realized
on (1, λ) strategies [24], where λ is the offspring population
size, to estimate the optimal ratio between λ/µ. It has been
shown that this ratio depends on the objective function and
increases with its complexity. A ratio λ/µ equal to 5 can
be considered as a good starting point, therefore an offspring
population λ = 30 is chosen here.

Total error is the sum of the position error at each path
point k = 2, . . . , N, and the orientation error in the last
two nodes k = (N − 1), N , with weights W1 = 0.5 and
W2 = 1 respectively, attaching greater importance to the last
point where the robot is meant to perform the manipulation.
Thereby, the joint configuration path must be transformed into
end-effector position and orientation coordinates through the
robot manipulator kinematic model. Position and orientation
errors, denoted as EP and E0, are defined as [20]

EP (Ω) =
1

2Rmax

N∑
k=2

|plk − pk| (4)

and

EO(Ω) =
1

2π

N∑
k=N−1

|ϕlk − ϕk|, (5)

where (~(pl),~(ϕl)) are the desired position and orientation
coordinates calculated by Ωl forward kinematics and Rmax
is the robot manipulator maximum reach suggested by [17]
as a normalization value. The resulting optimal joint path
Ω∗ minimizes the total deviation respect to Ωl, and the
optimization problem is conducted by the minimization of:

f(Ω) = w1EP (Ω) + w2EO(Ω) + w3ζ(Ω). (6)

subjetc to:

C = {Ω | g(Ω) ≤ 0 ∧ h(Ω) ≥ 0},

where g and h are restrictions imposed by the mechanical
joint limits of the robot manipulator, and w1, w2 and w3 are
weighting factors used according to task priorities.



III. EVOLUTION STRATEGY ADAPTATION ALGORITHM

The path evolutive adaptation is accomplished with an im-
plementation of the method denominated Evolution Strategies
(ES) [25]. The algorithm used to adapt the manipulation path is
illustrated in Algorithm 1, where Pg , and Pog are respectively
the father and offspring Population on generation g, and nb
is the number of design variables, which corresponds to the
number of manipulator joints.

Algorithm 1 Evolution Strategy
1: initialization Pg = 0
2: evaluation Pg
3: while termination criterion 6= true do
4: Pog ← Evolutionary mutation
5: evaluation Pog
6: Pg+1 ← selection(Pog

⋃
Pg)

7: if optimal position = true then
8: reduce σ
9: end if

10: if g module(10nb) = 0 then
11: step length control
12: end if
13: g ← g + 1
14: end while

The (µ+ λ)-EE presented in [25] is used with some mod-
ifications to address the optimal path adaptation problem. A
known initial manipulator configuration vector −→q1 is assumed,
as well as a robot base location and orientation at learned path
pl.

Consider an initial population of µ father individuals defined
as in (1)

Pg = {Ω1,g, . . . ,Ωi,g, . . . ,Ωµ,g},
where Ωi represents a floating point vector with length size

T = N.n and g = 0, . . . , gmax the generation number. In
the scheme (µ + λ)-EE the initialization process generates
a population of µ random individuals distributed within the
vector parameter bounds. If the initial location is unknown,
then the use of an uniform distribution would be advisable to
ensure the diversity of the population. Further matter, if the
initial joint configuration −→q1 is considered close enough to the
learnt path initial node (k = 1), we can intuitively assume
that the optimal solution must be near learned path Ωl. This
first estimation is included in the initialization process Pg=0,
as the learnt path perturbation with a Gaussian probability dis-
tribution at the configuration nodes K = 2, . . . , N , reducing
the convergence time. Therefore, the initialization process can
be expressed as

Ωi,g =

{ −→̂
q1 , if k = 1,

−→qlk + randG(0, σ2), if k = 2, . . . , N
(7)

Where randG(0, σ) is a Gaussian distribution random number
generator with zero mean and standard deviation σ, and i =
1, . . . , µ.

Once the population has been initialized, mutation is used
to build a λ size offspring population. For each offspring, a
parent is randomly selected, and each of its design variables
bi is mutated by adding a Gaussian random variable with zero
mean and a standard deviation σ.

Ωj,g =

{ −→̂
q1 , if k = 1,

−→qlk + randG(0, σ2), if k = 2, . . . , N
(8)

Where j = 1, . . . , λ, the step length σ = σhi during
the position optimization phase and σ = σlow during the
orientation optimization phase.

The objective evaluation function allows the assignment
of a cost value to each member from parent and offspring
populations: Pg and Pog . The new parents Pg+1 are selected
from both populations as the µ individuals with the best fitness,
that’s to say with the lowest cost function.

Ωi,g+1 =

{
Ωj,g, if f(Ωj,g) ≤ f(Ωi,g)
Ωi,g, otherwise

(9)

The manipulator Direct kinematics defined by an homo-
geneous transformation matrix is calculated to obtain total
cost function on (6). Homogeneous transform is a four by
four elements matrix that contains end-effector location used
for (4) and a rotation sub-matrix that is used to determine
orientation error for (5), in this way reducing computational
time is achieved by avoiding exact angles calculation.

Optimization loop begins by minimizing position error until
a fitness value is reached. Then orientation error is added
to the cost function, on first iterations the position error is
incremented due to new added criterion influence, but then
both criterion errors are gently improved as the generations
evolve.

The only drawback in obtaining EO from within the ho-
mogeneous transform is that calculated error in (5) is not
directly proportional to angle error since it is the result of
mathematical functions applied to the end-effector orientation
angles; therefore it can’t be used as a termination criterion.
This issue is overcome by checking angles after position
fitness is reached. Termination criterion takes into account only
the position error until a fitness value is reached, then exact
angles error is evaluated, if orientation fitness is not reached
the position fitness value is reduced and minimization process
continues. As both errors evolve together, orientation fitness
is found eventually.

To ensure the generation of a feasible path, joint upper
and lower limits need to be revised during optimization
process. Joint limits are mechanical constraints that define
the manipulator workspace, but also represent configuration
values of reduced dexterity and hence should be avoided in
the execution of the task. In the case of a boundary constraint
violation, there are many solutions to replace the values that
have exceeded their limits, [26]. Here a simple strategy is
used, resetting the out-of-bound parameters with the exceeded
bound value.



Finally mutation-selection process continues until conver-
gence criterion is accomplished or a maximum generation
reached.

IV. SIMULATIONS

The proposed methodology is tested in a simulation en-
vironment with a non-redundant mobile manipulator robot
denominated MANFRED [27], which consist of a six degrees
of freedom (n = 6) anthropomorphic arm mounted over a
mobile base with two degrees of freedom (n=2). This robot
was built in the Carlos III University of Madrid. Figure 1
shows the MANFRED robot in the developed 3D simulation
environment; our laboratory was modeled with elements as
doors and small tools to test grasping and manipulation tasks,
simulations include bodies dynamics to increase realism and
assure veracity.

The Denavit-Hartenberg parameters and joint limits for
mobile manipulator MANFRED’s robotic arm, are presented
in Table I.

TABLE I
MANFRED ROBOT DENAVIT-HARTENBERG PARAMETERS AND JOINT

LIMITS.

Art. αj aj(m) θj dj qbaj qalj

1 90 0 0 0.25 -90 90
2 -90 0.4 0 0 0 180
3 -90 0 -90 0 -90 90
4 90 0 0 0.35 -90 90
5 -90 0 0 0 -90 90
6 0 0 0 0.25 -90 90

The Ωl path describes our known task with N = 6
points, as shown in Figure 1. Forward Kinematic is calculated
using [28], obtaining the end-effectors position and orientation
{(xk, yk, zk), (φk, θk, ψk)} for each point k = 1, 2, . . . , 6.

Fig. 1. Manipulation learned path Ωl.

Table II shows the end-effector points coordinates for Ωl.
The robot location is given by the parameters (xb, yb, θb)
referenced to a point predefined on the simulation map,
where (xb, yb) determine the position coordinates in meters

and θb the robot base orientation in degrees, position in
zb is not included since the robot base keeps the robotic
arm at the same height all the time. For Ωl, the location is
pl = (−2.319,−2.138, 180◦).

Learned path Ωl is tested on the 3D simulation environment,
results show how the robot reaches an experimental tool.
Subsequently, this object is grabbed when the robotic hand
is closed, and robot is capable to carry out by moving its base
backwards.

TABLE II
END-EFFECTOR LEARNED PATH IN CARTESIAN SPACE.

k Xk Yk Zk φk θk ψk

1 250 147.63 -1000 −180◦ 0◦ −90◦

2 250 147.63 -980.62 174.27◦ 17.09◦ −108.86◦

3 250 284.83 -923.95 156.88◦ 28.39◦ −131.93◦

4 250 402.01 -834.35 131.93◦ 28.39◦ −156.88◦

5 250 491.23 -718.62 108.86◦ 17.09◦ −174.27◦

6 250 546.82 -585.47 90◦ 0◦ 180◦

Two locations are used to verify the algorithm effectiveness:
p1 and p2, these locations are different in position and orien-
tation from that of the known path. Initial arm configuration
~q1 = {0◦, 0◦, 0◦, 0◦, 0◦, 0◦} is assumed for all cases, and the
offspring population size is λ = 30 as proposed in Section II.
The algorithm is executed 20 times for each location. Table
III shows robot base locations for Ωl, Ω1 and Ω2.

TABLE III
POSITION AND ORIENTATION ROBOT BASE COORDINATES FOR Ωl , Ω1 AND

Ω2

Path x(m) y(m) θ

Ωl -2.319 -2.138 180.00◦

Ω1 -2.294 -2.104 181.48◦

Ω2 -2.200 -2.207 190.48◦

Once initial population members are generated, the execu-
tion of the algorithm starts looping to minimize (6). Position is
optimized first with the configuration parameters: F = 0.012
and σ in accordance to (3). After fitness is reached, orientation
is added to the objective function with σ reduced by a factor
of ten; termination criterion is settled as end effector error less
than 2.5 mm. Tests Results are shown in Table IV.

For an execution of the algorithm at p1, a solution Ω1 is
found after g = 120 generations in 1, 5 seconds. In orientation
terms an error of 2.98◦ is obtained on N − 1 point, and 0.29◦

on last one. This makes sense when we recall the weighting
factors for orientation optimization: W5 = 0.5 and W6 =
1. Lines described by the learned and evolutionary algorithm
adapted path are shown on Figure 2, it can be seen that adapted
path fits position closely with a soften adaptation curve when
approaching to the known path; a position error of 1.78 mm is
obtained in last node for this test execution. Results showed
that intermediate points presented lower position errors and
greater orientation errors than others because they are only
optimized in position, while last two nodes presented minimal
orientation error.



Fig. 2. Adapted and learned manipulation paths, Ω1 and Ωl.

All obtained manipulation paths are tested in the three-
dimensional dynamic simulation environment where the robot
executes the sequences correctly reaching the test tool every
time. The object is carry out when additional steps are exe-
cuted.

TABLE IV
PATH GENERARION STATISTICS FOR Ω1 AND Ω2 .

Generated paths:
Ω1 Ω2

Number of tests 20 20
Mean convergence generation 186.2 261.8
Best convergence generation 31 40
Worst convergence generation 500 500
Mean convergence time (seconds) 2.18 2.71
Best convergence time (seconds) 0.5867 3.92
Worst convergence time (seconds) 4.8736 4.8988
Mean position error (mm) 1.96 1.73
Min. position error (mm) 0.76 0.28
Max. position error (mm) 2.72 1.22
Mean orientation error 0.7831◦ 0.3703◦

Min. orientation error 0.5679◦ 0.0059◦

Max. orientation error 1.1180◦ 0.8448◦

Experiment results shows that errors can be minimized so
robot can achieve defined tasks. Time in worst-case scenario
rose to 4, 9 seconds when reaching maximum generation
gmax = 500, which stays within proposed real-time threshold.
Further inquiries over our previous work [21] found that
the forward kinematics calculus library consumed the most
of the algorithm computational time. Therefore, an optimal
computational complexity forward kinematics function was
implemented reducing execution time significantly. When
gmax is reached the fitness distance between the best and the

worst of elements in population is taken as a convergence
criterion, observe closely Figure 3 and 4.

On account of a reduced parent population size µ = 6, lines
on Figures 3 and 4 followed closely. Also an error peak when
orientation optimization is began can be appreciated on Figure
4 around generation 20. This peak is less obvious on Figure
3 because robot base orientation error is smaller in that case.

Fig. 3. Path fitness evolution for Ω1 through gmax generations.

Fig. 4. Path fitness evolution for Ω2 through gmax generations.

V. CONCLUSIONS

A methodology build over Evolution Strategies has been
presented. The adaptation of manipulation paths for mobile
manipulators is possible in real-time, achieving optimal manip-
ulation due to position, orientation and energy consumption.
Given a learned manipulation path a new one is calculated
when robot base is in a different location from that of the
learned path, minimal position and orientation end-effector
errors are obtained within the evolutive process. Criterions
and calculus are simplified to reduce computational time,
overcoming Evolutionary algorithms time consumption prob-
lem. A forward kinematics function was implemented for
reaching optimal computational time, it implied a significant
time reduction for the execution of the algorithm. Granted



that the algorithm needs no inverse kinematics, singularities
are avoided and convergence is guaranteed.

The experimental tests showed the ability to apply the
algorithm in real-time for obtaining adapted manipulation
paths, proving to be a feasible solution for mobile robots
manipulation problems. A computational time improvement
was obtained by first optimizing position until position error
is minimized, then orientation error is added to the objective
function with a reduced mutation step length until termination
criterion is fulfilled at the end of the process. It is advisable to
prioritize minimizing factors according to tasks because there
is a proportional relationship between time and optimization
parameters.

Additional development will be realized with other algo-
rithms for performance comparison. Real robot tests will be
conducted.
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