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Abstract—This paper presents a novel methodology for fast
path planning based on an offline predefined skeleton of the
environment by means of the Fast Marching Square method.
The FM? skeleton concept is introduced whose intuition is a set
which contains the shortest paths (in terms of time) of a given
environment. This way, the path planning algorithm is adapted
to the environment where a robot will navigate. An algorithm to
obtain this skeleton is detailed in order to be able to use it for
path planning purposes. When planning paths over the skeleton,
the results show that the time reduction is about 50% while
the characteristics of the F)M/? method remain: completeness,
safeness, smoothness and absence of local minima. This paper
also shows that the proposed method performs well in more
than 2 dimensions.

I. INTRODUCTION

Motion planning problems have been an active research
area, playing a fundamental role in many applications involv-
ing robotics, aerospace, automotive, defense, medical equip-
ments, nuclear power plant construction and decommissioning
among others. An important goal for path planning methods
is to be able to generate the path considering a wide range of
constraints. Most times its intention is to work out the optimal
safe trajectory in the proper time.

The Fast Marching Method is a complete algorithm which
has been proved to work out the path generation problem with
outstanding performance, obtaining the fastest path between
two points [1]. Moreover, it has been complemented employ-
ing Voronoi diagrams and similar techniques.

The Voronoi concept has been extensively used in diverse
fields for over three centuries. In his Traité de la Lumiére
published in 1644, Descartes uses diagrams similar to Voronoi
to show the disposition of matter in the solar system and
its environment. Voronoi diagrams have been appearing since
1970, as published in the surveys by Aurenhammer [2] and
Okabe [3]. Both present various algorithms, applications, and
generalizations of Voronoi diagrams. The Voronoi diagram and
the Fast Marching method have been already mixed in different
ways: planning paths over the Voronoi diagram [4] and the so-
called Voronoi Fast Marching (VFM) [5]. A similar approach
is presented in [6] where the Fast Marching Square (F'M?)
method is detailed.

The FM? method is a method that uses an algorithm
somewhat similar to those based on potential fields, but does
not exhibit the typical problems of the potential-field-based

methods [7]: (1) Trapping due to local minima, (2) No passage
between closely spaced obstacles, and (3) Limit cycles. The
algorithm uses a two-part approach. The first part builds
a “velocities map” of the environment that represents the
admissible velocity at discrete cells in the workspace, better
known as slowness map. The second part computes a smooth,
safe and time efficient path using the slowness map. As the
slowness map provides the maximum safe speed of the robot,
the obtained trajectory is the fastest path in time, assuming
the robot moves at the maximum allowed speed at every point
[6].

Even thought the generated path by FM? is safe, it is not
always necessary to displace as far as possible from the walls
and obstacles, as distance may be safe enough to navigate.
Considering this reason a further improvement is made to
FM?: a saturated variation of slowness map is implemented;
when the first path of the algorithm is completed, the slowness
map is first scaled and then saturated giving more freedom of
mobility to the robot.

In this paper, we get a fast path planning method based on
FM?. We present an algorithm which creates random paths
for a given map using the FM? path planning method. The
main idea of the proposed algorithm is to preprocess an already
know map in order to get the common possible paths for that
map, combining them when a new path is required. The key
idea is that in a real robot application, the environment will be
known (or obtained through SLAM). This environment can be
dynamic but its main parts will remain, such as floor, doors,
walls, and so on. Then the path planning method adapts to the
environment creating some kind of road map which allows the
FM? to spend the shortest possible time in path planning.

This paper is structured as follows. In Section II, we will
briefly describe the Fast Marching Method, and review some
related concepts. Furthermore, path planning application using
the FM? will also be presented. In Section III, we introduce
a novel concept called Fast Marching Square Skeleton. Path
planning over the F'M? Skeleton is presented in Section IV.
We extend and generalize this framework to d-dimensions in
Section V, and Section VI concludes this paper.

II. FAST MARCHING AND PATH PLANNING

The Fast Marching method is a level set method, proposed
by Osher and Sethian [8], [1] to solve the Eikonal equation
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which describes the motion of a frontwave propagating in a
non-homogeneus media where the speed F' does not have to
be the same everywhere, but it is always non-negative. T'(z) is
called the arrival function which computes the time the wave
will take to reach a point z.

The T'(z) function is originated by a wave that grows from
one single point (global minimum) at the source. As F' > 0
the wave only grows, and hence, points farther from the source
have greater 7. A local minimum would involve that a point
has a lesser 7" value than a neighbour point which is closer to
the source, which is impossible, as this neighbour must have
been reached by the wave before.

A. Application to Path Planning

The frontwave expansion speed F' can be directly assigned
from the values of the environment modeled in a gridmap,
where for each cell 0 means obstacles and collision-free
space is labeled as 1. To obtain a path from a point p to a
point ¢ a wave is expanded from ¢ until it reaches p. Due
to wave expansion properties, the wavefront will follow the
shortest time path between p and q. Even more, considering
the propagation speed as constant, the trajectory will also be
the shortest in terms of distance. The consequence is that
the T function will be local-minima-free, with one global
minimum at the goal point. Applying gradient descent over
the T function from the goal point, the initial point will
be reached. Fast Marching ensures that the path obtained is
unique and complete.

Figure 1 shows the result of applying F'M to find a
trajectory. The calculated path, although it is the shortest in
length, runs too close to obstacles so it might not be a safe
path. This causes the robot to go slowly when it is close to
obstacles in order to avoid collisions. Therefore the path might
also not be the shortest in time. In the following paragraphs
we are introducing two other different methods based on Fast
Marching which solve this problem: Fast Marching over the
Voronoi Diagram and Fast Marching Square (F'M?).
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Fig. 1. Binary map and the path obtained using Fast Marching. The frontwave
is also drawed (red).

B. Path Planning over the Voronoi Diagram

Since the Voronoi Diagram concept is simple and intuitive,
it can be applied to a huge number of applications. Path
planning is one of those. Given a finite set of objects in
a space, all locations in that space are associated with the
closest member of the object set. Thus, the space is partitioned
into a set of regions, called Voronoi regions. The Generalized
Voronoi Diagram is the set of the points which belong to the
frontier among regions.

The Voronoi Diagram is used as a way to obtain a roadmap
of the map. Then the Fast Marching method is used to search
the path over the Voronoi Diagram decreasing the time spent
in the search [4]. The main property of this diagram is that
it provides the safest possible path (in terms of distance to
obstacles) between two points due to its definition. Results
are shown in figure 2.

C. FM2 Path Planning Method

In the previous sections, there was just one wave source
at the target point. Here, all the obstacles are a source of the
wave, and hence, several waves are being expanded at the same
time [6]. As pixels get far from the obstacles, the computed T’
value is greater. This generates a new map that can be seen as
a slowness map. If we consider the T" value as a proportional
measure to the maximum allowed speed of the robot at each
point, we can appreciate that speeds are lower when a pixel is
close to obstacles, and greater far from them. In fact, a robot
whose speed at each point is given by the 7' value will never
collide, as T' — 0 when approaching to the obstacles.

Now, if we expand a wave from one point of the gridmap,
considering that the expansion speed F'(z,y) = T'(x,y), being
F(z,y) the speed at point z,y and T'(x,y) the value of the
slowness map at z,y, we will have that the expansion speed
depends on the position. As the slowness map provides the
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Fig. 2.
diagram.

a) Binary map and its Voronoi Diagram. b) Path obtained using this



maximum safe speed of the robot, the obtained trajectory is
the fastest path (in time) assuming the robot moves at the
maximum allowed speed at every point.

There are environments in which there is no need to follow
the farther trajectory from obstacles, as distance may be safe
enough to navigate. To solve this, a saturated variation of the
slowness map can be employed. The scaling of the map is
made according to two configuration parameters:

e Maximum allowed speed, which is the maximum control

speed the robot may receive.

e Safe distance, that is the distance from the closest obsta-

cle at which the maximum speed can be reached.

Figure 3 shows the performance of this algorithm.

III. FM2 SKELETON

As shown in the previous section, the Fast Marching method
is very versatile in path planning tasks. The main idea of this
paper is to merge the low computational complexity of the
method shown in II-B and the F'M? method properties: safe-
ness, smoothness, completeness, reliability and the absence of
local minima, which is the most important characteristic.

To achieve this goal a new concept is included, which we
have called FM? skeleton: a set of random paths, obtained
by means of FM?, distributed throughout the map. This set
creates a collision-free, smooth roadmap.

A. Creation of a FM?2 skeleton

The objective is to create a skeleton which have branches
in every zone of the map. The next points outline an algorithm
to obtain a F'M? skeleton which satisfies this requirement:

o Model the environment as an occupancy grid map where
the walls and obstacles are modeled with 0 (black) and
the clear space with 1 (white).

e Distribute uniformly an n number of random points
throughout the whole map. Erase those points which fall
in zones where there are obstacles or walls.

o Include characteristic points of the environment. Those
points where the robot commonly operates such as doors,
light switches, furniture, among others.
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Fig. 3. a) Slowness map and the path obtained with F'M2. b) Wavefronts at

each iteration. ¢) Saturated slowness map. d) Path obtained with the saturated
version of FM?2.

d)

Then, a loop begins whose steps are the following:

1) Select a point %.

2) Search a point j which Euclidean distance to the point
1 is higher than a value d,,;,. If no point is found, then
select the farthest one.

3) Compute the path between the two points ,j according
to the F'M? method (specifically, we use the saturated
version of the FM?2, at level sat).

4) Store the path with the other paths calculated in a binary
map, called Wy,

The loop ends when there are not any more couple points
to obtain more paths. The resulting Wy, can be considered
as a FM? skeleton. The figure 4 a) shows the random points
distribution and 4 a) displays the skeleton obtained for those
points. As one can see, all the rooms of the environment are
connected with smooth branches.

IV. PATH PLANNING OVER THE FM2 SKELETON

In section II-B the Fast Marching method has been applied
over the Voronoi Diagram. Here, the same concept is going
to be applied but using the FM? skeleton. To do this,
several additional steps are needed in order to adapt the F'M?
skeleton:

o Dilate (with image processing techniques) the W, map

to obtain a thickened skeleton, ensuring the continuity of
the skeleton.

e Compute the maximum between W, and a value g,
close to 0 but always positive. This allows to expand the
FM frontwave out of the skeleton if necessary.

b)

Fig. 4. a) Initial binary map with the set of n points randomly chosen but
uniformly distributed. b) W map.



o The final map Wggeleton 1S calculated including the walls
and obstacles (as black values) to the skeleton map Wi,.

These three steps can be summarized in the following
formula:

Wkeleton = Min (W07 maz(gmina Wp @ SE)) )

where Wy is the initial binary map and the symbol &
represents the dilation operation with the structuring element
SE, which shape can be a disk or square (in 2D) and its
size depends on how thick the skeleton is wanted to be (large
SE means more area covered by the skeleton but less time
reduction when planning).

Then, the result is a map Wggeleton in Which the skeleton
has the highest gray level (1) and the rest of the free space
have a low gray value (g.,;,). The reason to do this is that
the initial and final points are not restricted to fall into the
FM? skeleton when searching a path. If the points are not
in it, the robot will take the shortest path to return into the
skeleton where the wave expansion is much faster due to its
higher gray level in the Wggeleton mMap.

Finally, to obtain a path over the F'M? skeleton it is enough
to apply the base F'M method, expanding a wave from the
goal point until it reaches the initial point. This will provide
a funnel-shaped potential which represents the time the wave
takes to expand. The last step is then to apply gradient descent
over this potential to obtain the path.

This method can be employed as an offline unsupervised
learning algorithm, where the robot is able to predict which
paths are going to be executed more often. Thus precalculating
and merging those paths in a skeleton form can be interpreted
as a training process where the path planning system evolves
to adapt to the environment constrains.

Figure 5 shows the final performance of the proposed
algorithm. Although the generation of the diagram is not
deterministic, the algorithm appears to predict where are the
main zones of the map (corridors between rooms) and the
branches of the skeleton go into each room. The paths provided
by our method could be sometimes a little worse (a bit longer,
with not very smooth curves) but the time reduction could be
worthy in most of the applications. For this particular case,
when simulating in a 628x412 pixels map the time elapsed
with the proposed algorithm is 0.16 seconds, while it took
0.40 seconds to the standard FM? method. The generation
of the skeleton (using the parameters described in the next
section) took 13.24 seconds. In the worst case, the proposed
method will last at most the same time as the standard F M?>
when the required path is quite new.

A. Setting the parameters

The proposed algorithm has a set of parameters which can
change significantly the skeleton obtained. Following, how this
parameters influence is described:

o Number of points, n: An equation has been experimen-
tally obtained which assures a balanced distribution of
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Fig. 5. a) Comparison of the paths obtained with the saturated variation of
the F'M? method (in red) and the proposed method (in blue) shown over the
thickened skeleton. b) Same comparison but shown over the initial map. c)
Potential obtained when propagating the wave through other skeleton of the
same map. Blue means getting closer to the global minimum and red means
that the time is increasing.

points (in 2D):

n=a(Vz+./y) 3)

where x and y are the dimensions of the map (columns
and rows respectively) and « is a factor manually chosen.
e Minimum distance between points, d,;,: Our experi-
ments point out that a good equation d,,;, can be found

by:
dmin - 5 V (wQ + y2) (4)

where (3 is another factor to be set manually.

o Minimum gray level, gp,;n: Between 0 and 1.

o Saturation gray level, sat: Between 0 and 1.
Table I shows the parameters configuration for many ex-
periments, including a time comparison where t, t,, and



tr a2 are the times elapsed when creating the initial skeleton,
when planning over the skeleton and when planning with the
standard F'M? method, respectively. Also, figure 6 plots the
results obtained in these experiments. The « and (3 values
have been chosen experimentally with the objective of achieve
enough points and with enough connectivity among them.
Note that if « is too small the skeleton will have not enough
branches to cover all the map. However, if it is set too large the
skeleton will cover a wide area and the time reduction will not
be that important. In the case of 3, is a small value is chosen
the skeleton will not have enough connectivity. Note that in
the experiment (6) the environment is different. In this case
the map is twice the size of the other experiments’ map. The
« has to change this is new map has more rooms, and with
a = 2 the probability of having a room without an skeleton
branch is high.

The results outline that the time reduction for 2D planning
use to be around 50% (depending on the parameters) obtaining
a path as smooth and safe as with the base F'M? method. The
time consuming by the skeleton generation depends mostly on
the parameters given to the algorithm but this is not critical
since this process can be executed offline.

V. EXTENSION TO D-DIMENSIONS

Many mobile robotics applications can be approximated
by a 2-dimensional problem. But other ones simply cannot.
The complexity of mobile manipulators or UAVs control does
not accept bi-dimensional solutions. Therefore, most of the
algorithms proposed which work very well in 2 dimensions
often fail when increasing the dimensionality (due to the
computational complexity).

Although it has been proved that the complexity of the
Fast Marching method is O(n) [9], it suffers the same prob-
lem when expanding to more than 2 dimensions, since the
computational cost increases exponentially with the dimension
of the problem. The proposed method in this paper assumes
that the skeleton generation is done offline, and the path
planning has to be done online. The fact of creating a skeleton
by using FM? allows to search paths within the skeleton
in d dimensions. Thus, the problem can be reduced to an
unidimensional one, since the frontwave propagation is being
guided by a fube.

To give a better intuition of this fact, we use the simile
proposed by Greene to justify the string’s theory [10]: let
us suppose an ant moving in a cable. This cable exists in 3
dimensions but the ant only can move forwards/backwards and
clockwise/counterclockwise around the cable. The movement
of the ant can be perfectly defined with only two values
(dimensions). Moreover, if we put the ant inside the cable,
it can only move forwards or backwards (because moving
clockwise or counterclockwise changes nothing when it is
inside the cable) so the movement in 3 dimensions is restricted
to only one degree of freedom. Also, if we look at a cable from
far away it appears to be unidimensional (a line).

If we apply this concept to path planning, the frontwave is
expanded trough the d-dimensional skeleton the dimensional-

ity can be considered as d ~ 1. It is true that inside the tube
the dimension is still d, but the volume of the tube is negligible
in comparison with the volume of the rest of the space (d = 3)
or hyperspace (d > 3).

The algorithm to employ is exactly the same as proposed
in sections III-A and IV. It is only necessary to adapt the
parameters described in section IV-A. Figure 7 shows an
example in 3 dimensions, where the proposed method took
0.22 seconds, while the time elapsed with the standard F'M 2
method was 0.76 seconds. The skeleton was generated in 15.12
seconds.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel method for fast path planning
without losing the safeness or smoothness in the obtained
paths in comparison with the standard F'M? path planning
method. Also, the simulations carried out with Matlab show
an important time reduction when calculating the path: 50%
or even more.

It has been shown how the different parameters of the
algorithm influence the skeleton and the time taken when
calculating new paths.

Lastly, it has been proved that it is possible to extend the
algorithm to more than 2 dimensions. Thus, the proposed
algorithms is applicable not only in mobile robot applications
but manipulation and UAVs among others.

We are aware that the algorithm has not been tested in real
robot. However, from our point of view, the algorithm only
influences on the path planning computation time, hence the

Fig. 7. Example of application of the algorithm in 3 dimensions. a) 3D
initial map with F' M2 path. b) The skeleton and also the path obtained.



TABLE I
TIME RESULTS DEPENDING ON THE ALGORITHM PARAMETERS.

Test | a | n B dmin (grid cells) | gmin | sat | ts (S) | tpp (8) | tppr2 (8)
1 2 | 76 03 | 158 0.001 | 0.3 | 3.34 0.10 0.20
2 4 | 152 | 0.3 | 158 0.001 | 0.3 | 6.82 0.11 0.20
3 2 | 76 0.1 | 53 0.001 | 0.3 | 5.82 0.07 0.20
4 2 | 76 03 | 158 0.1 03 | 3.94 0.21 0.21
5 2 | 76 03 | 158 0.001 | 0.7 | 421 0.09 0.20
6 4 | 188 | 0.3 | 250 0.001 | 0.3 | 2324 | 0.17 0.46

Fig. 6. Skeleton depending on the different parameters. From top left to bottom right, experiments 1 to 5 respectively. In most cases the path obtained using
the FM? skeleton (blue) is very close to the one obtained with the standard F'M 2 method (red).

implementation on a real robot adds nothing relevant to the
paper. Also, we have focused on improving F'M? algorithm
so we understand that the comparison with other methods is
well addressed in previous papers.

The future work is focused on removing the stochasticity
of the algorithm. One of the main ideas is to automatically
obtain the points to generate the F M2 skeleton from the map
characteristics such, for example, the center of the different
rooms. Another interesting work is to convert the skeleton
creation to an online algorithm, allowing it to evolve and adapt
to environment changes.
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