
Generalizing n-Dimensional Grid Maps
Handling and Neighbor Cells Extraction

Javier V. Gómez
RoboticsLab

Carlos III University of Madrid
E-mail: jvgomez@ing.uc3m.es

Website: www.javiervgomez.com
Document: V 1.1

March 11, 2014

Abstract

Grid maps are extensively used in many different algorithms. Among
the different grid map types we are focusing on rectangular (or cubic)
grid map with a priori unknown number of dimensions. We are de-
tailing the main problems that arise when working with this type of
data structure: extraction and validation of 4-connectivity neighbors
for a given cell, conversion from index to coordinates (and vice-versa)
and the mathematical generalization to n-dimensional grids. Also, we
are detailing a generic implementation available as free software.

1 Introduction

Mathematically, grid maps are data structures that divide (discretize) the
space in cubes (hypercubes) of n dimensions. They are commonly used in
artificial intelligence algorithms, such path planning. Although their mathe-
matical definition is clear and simple, it is not that easy to work with them
from a practical point of view. Therefore, in this report we are detailing
the mathematical generalization of common operations with cubic grid maps
and how to implement them. Another useful tutorial on grid maps (but only

1

for 2D) can be found in http://www-cs-students.stanford.edu/~amitp/

game-programming/grids/ which includes triangular and hexagonal grids.
The main reason of this report is that, when trying to implement such

structures, it becomes difficult to generalize. For example, boost::multi array
library provides tools to create n-dimensional arrays in which the number
of dimensions has to be known in compilation time, which is an important
limitation. We detected a lack in the available software of n-dimensional grid
maps in which the size can be dynamic, even in the number of dimensions,
in run time. Therefore, we came up with the formulation described in this
document in which all the operations are parametrized by the number of
dimensions and their size. This is probably not a novel work, but we were
not able to find any similar document.

For any comment or questions about the formulation, implementation,
this document or whatever, please, do not hesitate to contact the author.

Note A strong mathematical background is NOT required to understand
this document, not even a strong programming background. The formula-
tion and implementation detailed in the following lines have been tested in
complex algorithms.

2 Definitions

For simplicity, we are assuming cubic (or hyper-cubic) grids. This mean that
the cell size is the same in all dimensions. However, the same applies for any
parallelogram-based grid map. Hence, we define an n-dimensional grid map
as the set of cells correctly ordered whose dimensions are consistent in terms
of size. In other words, if the first row has 5 columns, the second row will
also have 5 columns.

An n-dimensional grid map G is composed by ndims dimensions. The size
of each dimension is stored in a vector d = [d0, d1, . . . , dn−1] and the size of
the total grid map is

size(G) =
n−1∏
i=0

di = d0 · d1 · · · · · dn−1

Each cell within the grid map can be accessed in a double manner:

2

http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/

1. By its index. Each cell has a specific index within the grid map which
completely depends on the ordering convention chosen.

2. By its coordinates, giving a set of coordinates c = [c0, c1, . . . , cn−1].

The conversion from index to coordinates and vice-versa is trivial but can
be very painful if one does not have a good day. Therefore, it is detailed in
section 4

In figure 1 examples of 2D and 3D grid maps are shown. Note that the
index ordering is not unique. In this case we have chosen this ordering since it
is easier to match with the physical dimensions of the grid (dimension 0 is x,
dimension 1 is y, and so on). For instance, in computer vision it is almost an
standard to place the first cell (pixel) in the top-left of the grid map (image)
with the dimension 0 (rows) going downwards and dimension 1 (columns)
leftwards. In any case, the formulation should valid in any case. However,
we recommend to review it as minor adjustments could be required.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

dimension 0

d
im

e
n

si
o
n

 1

ndims = 2
d= [5, 4]

size(G1)= 20 cells

Grid G1

dimension 0

d
im

e
n

si
o
n

 2

ndims = 3
d= [5, 4, 3]

size(G2)= 60 cells

Grid G2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

34

39

40 41 42 43 44

45 46 47 48 49

50 51 52 53 54

55 56 57 58 59

di
m

en
sio

n
1

Figure 1: Example of a 2D and a 3D grid map. Usually, 3D grid maps are
represented with cubes. The numbers within the cells are the indices of those
cells.

3 General Neighbor Extraction

In this section we detail the generalization of the neighbor extraction in a
4-connectivity scheme. In order words, only cells which are touching other

3

cells (sharing faces) are considered neighbors. In case you are interested in a
8-connectivity formulation and you want it to be included in this document,
please let the authors know.

In order to help the reader, we will detail the general formulation by
explaining the 2D case, expanding it to 3D and later generalizing to n-
dimensions. Along the document, we are working with the cells indices.
When the dimensions of the grid are known it is easy to build a vector of size
ndims and check the neighbors by doing ±1 in each coordinate. However, in
our case the dimensions of the grid are not known until execution. Therefore,
to generalize it is much easier and efficient to work indices, as we are showing
in the next paragraphs.

3.1 2-dimensional Neighbor Extraction

In a 2-dimensional map, the neighbor extraction is almost direct. In this
case, there are 4 neighbors, as shown in figure 2.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

dimension 0

d
im

e
n
si

o
n
 1

ndims = 2
d= [5, 4]

size(G1)= 20 cells

Grid G1

Figure 2: 4 neighbors highlighted in red of cell with index 7 (shaded) in a
2D grid map.

Now let us focus on the case shown in figure 3: a general 2D grid map
where d = [d0, d1] is not known in advance. The neighbors of a cell with

4

index i,N(i) are given by the following expression:

N (i) =

{
i− 1

i + 1
for dimension 0{

i− d0

i + d0
for dimension 1

(1)

0 1 2

dimension 0

d
im

e
n

si
o
n

 1

ndims = 2
d= [d1, d2]

size(G)= n cells

2DGrid G

d0-1

d0 d0+1 d0+2 2d0-1

3d0-1i2d0+12d0

(d1-1)d0
(d1-1)d0

 +1
(d2-1)d0

 +1
d1d0-1

Figure 3: 4 neighbors highlighted in red of cell with index i (shaded) in a
generic 2D grid map.

In the case shown in figure 3, we have i = 2d0 + 2. Hence, its neighbors
will be:

N (i) = N (2d0 + 2) =

{
i− 1 = 2d0 + 3

i + 1 = 2d0 + 1
for dimension 0{

i− d0 = d0 + 2

i + d0 = 3d0 + 2
for dimension 1

(2)

5

3.1.1 Checking neighbors validity

If the queried index i is in one of the borders of the grid map, it will happen
that the neighbors are not valid. Recalling figure 2, imagine that we want to
extract the neighbors of i = 19. According equation (1), the set of neighbors
would be N (19) = 18, 20, 14, 24. However, we can see that the cells with
index 20 does not exist. The returned neighbor is out of bounds of the given
grid map. Also, N (14) = 13, 15, 9, 19 gives index 15 as neighbor. In this case
it is supposed to be a neighbor in dimension 0, but its value for dimension 1
(coordinate 1) is c1 = 3 while this value for cell index 14 is c1 = 2. Therefore,
it is not a neighbor.

This checking is easy if we were working with coordinates. Coordi-
nates of cell index 14 are c(14) = [4, 2]. Neighbors in each dimension
can be obtained by doing ±1 in each dimension. This means N ([4, 2]) =
[3, 2], [5, 2], [4, 1], [4, 3], where [5, 2] is out of bounds of the grid. As we de-
cided to work with cell indices, the following has to be checked:

• Dimension 0: Are the 2 neighbors in the same row (c1) that the
queried cell?

• Dimension 1: Are the 2 neighbors within grid bounds?

The mathematical expression to check if the given indices are neighbors
of i are as follows:

1. Neighbors of i in dimension 0 are valid if (operator [·] means the integer
part, this is, the integer number immediately below):

[(i± 1)/d0] = [i/d0] (3)

2. Neighbors of i in dimension 1 are valid if:

i− d0 ≥ 0
i + d0 < size(g) = d0 · d1

(4)

3.2 3-dimensional Neighbor Extraction

Following the same procedure as for 2D grid maps, the neighbors extraction
in a 3D grid map whose dimensions are not known until run time, as shown in

6

figure 4, is detailed in the following lines. In this case, there are a maximum
of 6 neighbors. The drawing of a 3D grid map with undefined dimensions
size is omitted since it is hard to understand. The following expression is
valid to get the neighbors of such grid map:

N (i) =

{
i− 1

i + 1
for dimension 0{

i− d0

i + d0
for dimension 1{

i− d0 · d1
i + d0 · d1

for dimension 2

(5)

3DGrid G

dimension 0

d
im

e
n

si
o
n

 2

ndims = 3
d= [5, 4, 3]

size(G)= 60 cells

0 1 2 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

34

39

40 41 42 43 44

45 46 47 48 49

50 51 52 53 54

55 56 57 58 59

di
m

en
sio

n
1

3

Figure 4: 6 neighbors highlighted in red of cell with index i (shaded) in a 3D
grid map.

3.2.1 Checking neighbors validity

We need to check the validity of the indices returned by the neighbors ex-
traction function as we did previously for 2D grid maps. Analogously, the
procedure is as follows (given in a slightly more formal way than 2D):

• Dimension 0: Are the 2 neighbors in the same row (c1) that the
queried cell?

7

• Dimension 1: Are the 2 neighbors within the same 2D grid slice?

• Dimension 2: Are the 2 neighbors within grid bounds?

The mathematical expression to check if the given indices are neighbors
of i are as follows:

1. Neighbors of i in dimension 0 are valid if (operator [·] means the integer
part, this is, the integer number immediately below):

[(i± 1)/d0] = [i/d0] (6)

2. Neighbors of i in dimension 1 are valid if:

[(i± d0)/(d0 · d1)] = [i/(d0 · d1)] (7)

3. Neighbors of i in dimension 2 are valid if:

[(i± d0 · d1)/(d0 · d1 · d2)] = [i/(d0 · d1 · d2)] (8)

3.3 n-dimensional Neighbor Extraction

In light of the step from 2D to 3D neighbor extraction, it is possible to
generalize the formulation for n-dimensions according to the next expressions:

N (i) =

{
i− 1

i + 1
for dimension 0{

i− d0

i + d0
for dimension 1{

i− d0 · d1
i + d0 · d1

for dimension 2

...{
i−
∏n−2

k=0 dk = i− d0 · d1 · d2 · · · · · dn−2

i +
∏n−2

k=0 dk = i + d0 · d1 · d2 · · · · · dn−2

for dimension n-1

(9)

8

3.3.1 Checking neighbors validity

• Dimension 0: Are the 2 neighbors in the same row (c1) that the
queried cell?

• Dimension 1: Are the 2 neighbors within the same 2D grid slice?

• Dimension 2: Are the 2 neighbors within the same 3D grid slice?
...

• Dimension n-1: Are the 2 neighbors within the same nD grid slice?

More formally:

1. Neighbors of i in dimension 0 are valid if (operator [·] means the integer
part, this is, the integer number immediately below):

[(i± 1)/d0] == [i/d0] (10)

2. Neighbors of i in dimension 1 are valid if:

[(i± d0)/(d0 · d1)] = [i/(d0 · d1)] (11)

...
n. Neighbors of n− 1 in dimension 2 are valid if:[

(i±
n−2∏
k=0

dk)/
n−1∏
k=0

dk

]
=

[
i/

n−1∏
k=0

]
(12)

that means:

[(i± d0 · d1 · · · · · dn−2)/(d0 · d1 · · · · · dn−1)] = [i/(d0 · d1 · · · · · dn−1)] (13)

4 Helper Functions

In this section we are describing many helpful functions that help the han-
dling of such n-dimensional grid maps.

9

4.1 Index to coordinates

It would be really useful to transform cell indices into sets of coordinates
for debug or printing purposes. Given an index i of an grid map with n
dimensions with dimension sizes d, the set of coordinates c can be computed
as follows (it is easier to start from the last dimension):

cn−1 =
[
i/
∏n−2

k=0 dk
]

cn−2 =
[
(i− cn−1 ·

∏n−2
k=0 dk)/

∏n−3
k=0 dk

]
cn−3 =

[
(i− cn−1 ·

∏n−2
k=0 dk − cn−2 ·

∏n−3
k=0 dk)/

∏n−4
k=0 dk

]
...

c0 =
[
(i− cn−1 ·

∏n−2
k=0 dk − cn−2 ·

∏n−3
k=0 dk − · · · − c1 · d0)/1

]
(14)

Note Be very careful when implementing this with the parenthesis and
operations preference.

4.2 Coordinates to index

This operation can be also very useful when dealing with n-dimensional grid
maps. Given a set of coordinates c of a cell within a grid map with n
dimensions and dimension sizes d, the cell index can be computed as shown
in the next equation:

i = cn−1 ·
n−2∏
k=0

dk + cn−2 ·
n−3∏
k=0

dk + · · ·+ c1 · d0 + c0 (15)

5 Implementations

We have already implemented an n-dimensional grid map in C++. Our
code aimed to be as efficient as possible. It is under continuous develop-
ment and we are aware that many performance improvements can be done.
The software is distributed under the free software license GNU/GPL v3.0
and it is uploaded at Biicode (http://www.biicode.com) in the block jo-
tauve/ndgrid map (https://www.biicode.com/jotauve/blocks/jotauve/

10

http://www.biicode.com
https://www.biicode.com/jotauve/blocks/jotauve/ndgrid map/branches/master
https://www.biicode.com/jotauve/blocks/jotauve/ndgrid map/branches/master

ndgridmap/branches/master). The same version applied in the Fast March-
ing Algorithm is available in GitHub (https://github.com/jvgomez/fastmarching/
tree/master/ndgridmap).

Is it based on the STL vector¡¿ class. Previous versions allowed run time
modifications in the number of dimensions and their size (no other code was
found on the internet with this feature). However, in new versions it was
decided to set the number of dimensions in compilation time (since this is
easy to predict). This gives a plus of efficiency to the class since most of
the for loops can be optimized by the compiler. To turn on this feature of
the latest version is not difficult and does not require too much time. If
you are interested, contact the author for more information about this. It
mainly consists on including ndims as an attribute to the nDGridMap class
and change all the arrays for std::vectors with no maximum size.

The class is templated so the cell element can be whatever the user wants
(as long as a minimal required interface is accomplished. We recommend any
class used as cell element to derive from the Cell class provided in the same
Biicode block. Its declaration is simple, mainly:

template <class T, size_t ndims> class nDGridMap {

friend std::ostream& operator << (std::ostream & os, const

nDGridMap<T,ndims> & g);

public:

nDGridMap<T,ndims>() {leafsize_ = 1.0f;}

nDGridMap<T,ndims> (const std::array<int, ndims> & dimsize, const

float leafsize = 1.0f);

virtual ~nDGridMap<T,ndims>();

void resize (const std::array<int, ndims> &

dimsize);

int size () const;

T & operator[](const int idx);

T & getCell (const int idx);

float getMaxValue ();

float getLeafSize() const;

int getNDims() const;

std::array<int, ndims> getDimSizes() const;

11

https://www.biicode.com/jotauve/blocks/jotauve/ndgrid map/branches/master
https://www.biicode.com/jotauve/blocks/jotauve/ndgrid map/branches/master
https://github.com/jvgomez/fastmarching/tree/master/ndgridmap
https://github.com/jvgomez/fastmarching/tree/master/ndgridmap

double getMinValueInDim (const int idx, const int dim);

int getNeighbors (const int idx, std::array<int, 2*ndims> &

neighs);

void getNeighborsInDim (const int idx,

std::array<int, 2*ndims>& neighs, const

int dim);

void getNeighborsInDim (const int idx,

std::array<int, 2>& neighs, const int

dim);

int idx2coord (const int idx,

std::array<int, ndims> & coords);

int coord2idx (const std::array<int, ndims>

& coords, int & idx);

void showCoords (const int idx);

void showIdx (const std::array<int, ndims> &

coords);

private:

std::vector<T> cells_; /*!< The main

container for the class. */

std::array<int, ndims> dimsize_; /*!< Contains the size of each

dimension. */

float leafsize_; /*!< Real size of the cells. It is assumed that

the cells in the grid are cubic. */

int ncells_; /*!< Number of cells in the grid (size) */

// Auxiliar vectors to speed things up.

std::array<int, ndims> d_;

std::array<int, 2> n; /*!< Internal use in

getMinValueInDim();

int n_neighs;

};

NOTE: The function getNeighborsInDim() is overloaded depending on
the size of the array given in the argument. This is because this function
could be useful in order to compute neighbors separately for each dimension
or to put all together in just one array. The one used in this case is void
getNeighborsInDim (const int idx, std::array¡int, 2*ndims¿& neighs, const int
dim); since we want to put all the neighbors in the same array. The other
function is internally used with the getMinValueInDim() function together
with the n attribute.

12

An important performance trick is the vector d . This vector DOES
NOT correspond to the d vector explained in previous sections (this one
is dimsize). The vector d is computed in a way that d [0] = dimsize [0],
d [1] = dimsize [0]·dimsize [1], d [2] = dimsize [0]·dimsize [1]·dimsize [2],
and so on. It is precomputed in the constructor (and resize() method) as
follows:

for (int i = 0; i < ndims; ++i) {

ncells_ *= dimsize_[i];

d_[i] = ncells_;

}

This vector is used in many different functions in order to not compute
every time the iterative product operation which, in the previous section, it
was used many times.

5.1 nDGridCell::getNeigbors()

This function implements the formulation give in equations 9 and 12 for n
dimensions. The code is as follows:

int getNeighbors (const int idx, std::array<int, 2*ndims> & neighs) {

n_neighs = 0;

for (int i = 0; i < ndims; ++i)

getNeighborsInDim(idx,neighs,i);

return n_neighs;

}

Explanation: In order to get the 4-connectivity neighbors, we are search-
ing in every dimension separately, putting all the found neighbors in the
neighs vector. When this function is called, the private attribute n neighs is
set to 0 and it will count how many neighbors we found, up to a maximum
up 2*ndims. Therefore, the getNeighborsInDim() function is called for each
dimension:

void getNeighborsInDim(const int idx, std::array<int, 2*ndims>& neighs,

const int dim) {

int c1,c2;

if (dim == 0) {

c1 = idx-1;

13

c2 = idx+1;

// Checking neighbor 1.

if ((c1 >= 0) && (c1/d_[0] == idx/d_[0]))

neighs[n_neighs++] = c1;

// Checking neighbor 2.

//if ((c2 < ncells_) && (c2/d_[0] == idx/d_[0])) // full

check, not necessary.

if (c2/d_[0] == idx/d_[0])

neighs[n_neighs++] = c2;

}

else {

// neighbors proposed.

c1 = idx-d_[dim-1];

c2 = idx+d_[dim-1];

// Checking neighbor 1.

if ((c1 >= 0) && (c1/d_[dim] == idx/d_[dim]))

neighs[n_neighs++] = c1;

// Checking neighbor 2.

//if ((c2 < ncells_) && (c2/d_[dim] == idx/d_[dim])) //

full check, not necessary.

if (c2/d_[dim] == idx/d_[dim])

neighs[n_neighs++] = c2;

}

}

We are applying exactly the equations 9 and 12 but with the small mod-
ification of using d which already contains the iterative product results.
Dimension 0 is done apart for code simplicity.

Note The bound checking (c1 > 0) when checking the neigbor computed
with −. For instance, neighbors of index 0 in a uni-dimensional grid of size 5
would be indices -1 and 1. In C/C++, (int)-1/5 will be 0, while the integer
part is -1. Because of this, this additional checking is required. Be really
careful if you implement this in other languages, as this behavior may differ.
We implement it this way since it is more efficient than actually computing
the integer part.

5.2 nDGridCell::idx2coord()

This function implements the equation 14 with the same modification as
before leveraging d . This function takes as input the index we want to

14

convert and the vector of coordinates where the output will be stored. The
code is:

int idx2coord (const int idx, std::array<int, ndims> & coords) {

if (coords.size() != ndims)

return -1;

else {

coords[ndims-1] = idx/d_[ndims-2]; // First step done

apart.

int aux = idx - coords[ndims-1]*d_[ndims-2];

for (int i = ndims - 2; i > 0; --i) {

coords[i] = aux/d_[i-1];

aux -= coords[i]*d_[i-1];

}

coords[0] = aux; //Last step done apart.

}

return 1;

}

Explanation: First, a dimensional check is carried out to avoid incorrect
parameters. The coordinate of the last dimension is done first outside the for
loop to initialize the aux variable, which accumulates the subtraction of the
values to the index before the division. Lastly, the first coordinate is done
as the rest of the subtraction.

5.3 nDGridCell::coord2idx()

In this case, the implementation of equation 15 is much straight forward:

int coord2idx (const std::array<int, ndims> & coords, int & idx) {

if (coords.size() != ndims)

return -1;

else {

idx = coords[0];

for(int i = 1; i < ndims; ++i)

idx += coords[i]*d_[i-1];

}

return 1;

}

15

Explanation: The function gets as parameters the vector of indices to
convert and the index to be returned. After a checking in the dimensions, the
idx variable is incremented for every dimension according to its coordinate
in that dimension.

IMPORTANT NOTE Note that the indexing is not valid for certain
languages. In Matlab, for instance, all the indices of a vector (or matrix) will
be from 1 to n (instead from 0 to n− 1 as in C++). This applies to all the
code shown in this document. Take into account also the language-dependent
behavior of certain functions, such as integer division.

Disclaimer The software is distributed under the free software license
GNU/GPL v3.0. Please check the conditions of this license before using
the software. It is distributed “as is”, without any warranty. You probably
need a Biicode account to access the code. It is free. The jotauve/nD-
GridMap Biicode block will probably depend on other Biicode blocks. As
long as you use Biicode as well those files will be automatically included in
your project when compiling. If you prefer to take the code out of Biicode,
please analyze carefully the includes in the source files to discover which
other files you will need. A stand-alone version is in the GitHub repository
(https://github.com/jvgomez/fastmarching/tree/master/ndgridmap).

This document, images and their sources are licensed under the Creative
Commons License, Attribution Share-Alike 3.0 (CC BY-SA 3.0) http://

creativecommons.org/licenses/by-sa/3.0/.
For any further information about anything (code, this document, formu-

lation, etc), do not hesitate to contact the authors, www.javiervgomez.com.

16

https://github.com/jvgomez/fastmarching/tree/master/ndgridmap
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
www.javiervgomez.com

	Introduction
	Definitions
	General Neighbor Extraction
	2-dimensional Neighbor Extraction
	Checking neighbors validity

	3-dimensional Neighbor Extraction
	Checking neighbors validity

	n-dimensional Neighbor Extraction
	Checking neighbors validity

	Helper Functions
	Index to coordinates
	Coordinates to index

	Implementations
	nDGridCell::getNeigbors()
	nDGridCell::idx2coord()
	nDGridCell::coord2idx()

